Physics, asked by iMBonDDDD, 11 months ago

Differentiate Y = Sin(x² + 5)​

Answers

Answered by Anonymous
24

\mathfrak{\huge{\green{\underline{\underline{AnswEr :}}}}}

⚘ Let f(x) = sin(x² + 5)

⚘ y = sin(x² + 5)

We need to derivative Y , w. r. t. x

 \huge{ \frac{dy}{dx} = \frac{d(sin( {x}^{2} + 5)) }{dx} }

⇒ cos (x² + 5) × \frac{d( {x}^{2} + 5) }{dx}

\boxed{sin \: x' = \cos \: x }

⇒ cos (x² + 5) × \frac{d( {x}^{2} )}{dx} + \frac{d(5)}{dx}

⇒ cos (x² + 5) × {2x}^{(2 - 1)} + 0

⇒ cos (x² + 5) × 2x

⇒2x cos (x² + 5)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

<marquee> Thanks ❤

Answered by Martin84
0

Answer:

2xcos(x^2 + 5)

Explanation:

y = sin(x^2 + 5)

diffrenciating with respect to x we getc

dy/dx = d(sin(x^2+5)/dx *d(x^2+5)/dx

dy/dx = 2xcos (x^2 + 5)

Similar questions