differentiate y = sinx³
Answers
Answered by
3
y(x) =sin(x) ^3
u=x^3 so yx= sinu
dy/dx = du/dx ✖️ dy/du
Now, du/dx= 3x^2
dy/du = cos(u)
dy/du= (3x^2) {cos(u)}
Substituting x^3 back in value of u-
dy/dx = 3x^2 cosx^3
u=x^3 so yx= sinu
dy/dx = du/dx ✖️ dy/du
Now, du/dx= 3x^2
dy/du = cos(u)
dy/du= (3x^2) {cos(u)}
Substituting x^3 back in value of u-
dy/dx = 3x^2 cosx^3
Anonymous:
thanks bro
Similar questions