Math, asked by tingjumruangt1297, 1 year ago

Differentiate y=tan^-1*(a+btanx/b-atanx)

Answers

Answered by rishabhsingh010
10
Y=tan^-1(a/b+tanx/1-a/btanx)
Thus,y=tan^-1{tan(tan^-1a/b)+tanx/1-{tan(tan^-1a/b)tanx}
So,y=tan^-1a/b+x
By differentiate
Y'=1 answer
Answered by jitendra420156
15

\therefore \frac{dy}{dx}=1

Step-by-step explanation:

Given that,

y= tan^{-1}(\frac{a+btanx}{b-atanx})

\Rightarrow y= tan^{-1}[\frac{b(\frac ab+tanx}{b(1-\frac a b tanx)}]        [taking common b]

\Rightarrow y= tan^{-1}[\frac{(\frac ab+tanx}{(1-\frac a b tanx)}]

Let, \frac a b  = tan \theta

\Rightarrow y= tan^{-1}[\frac{tan\theta+tanx}{(1-tan\theta tanx)}]

We know that, tan(a+b)=\frac{tan a+tan b}{1-tan a \ tan b}

\Rightarrow y= tan^{-1}[tan (\theta+x)]

\Rightarrow y =\theta +x

Now putting the value of θ

\Rightarrow y = \frac ab+x

Now differentiating with respect to x

\therefore\frac{dy}{dx}=\frac{d}{dx}(\frac ab+x)

\therefore \frac{dy}{dx}=1

Similar questions