Math, asked by tbenjaminfrankalin, 6 hours ago

Differentiate y = tan - 1 _a - x 1 + ax DIFFERENTIATION Put a = tana and x = tan 0. tana - tane tan + tana tane + y = tan = tan = α - 0 tan (α - 0) = a - tan X. Here a is a constant since a is a constant. dy 1 dx (1 + x²) (B.Sc. 1989)​

Answers

Answered by sujal1247
1

\color{blue}{ \colorbox{red}{\colorbox{yellow} {answer}}}

let  \: y =  {tan}^{ - 1} ( \frac{a + x}{1 - ax} ) \\ putting \: a = tan \alpha  \:  \: and  \: \: x = tan \theta \\  =  > y =  {tan}^{ - 1} ( \frac{tan \alpha +tan \theta }{ 1-tan \alpha.tan \theta } ) \\  =  {tan}^{ - 1} (tan( \alpha +  \theta)) \\ =  \alpha +  \theta \\ so , \:  \:  \:  \:  \:  \:  \: \: y =  {tan}^{ - 1} \alpha  +  {tan}^{ - 1}  x \\ differentiating \: w.r.t.x \\  ∴\frac{dy}{dx}  =  \frac{d}{dx} ( {tan}^{ - 1} \alpha  +  {tan}^{ - 1}x ) \\  ∴ \frac{dy}{dx} = 0 +  \frac{1}{1 +  {x}^{2} }  \\  ∴\frac{dy}{dx}  =  \frac{1}{1 +  {x}^{2} }

Similar questions