differentiate y=tanx-1/secx
Answers
Answered by
1
check out the attachment
Attachments:
Answered by
13
Answer:
d y / d x = ( sin x + cos x )
Step-by-step explanation:
Given :
y = tan x - 1 / sec x
Diff. w.r.t. x
d y / d x = d ( tan x - 1 / sec x ) / d x
Applying quotient rule :
d y / d x = [ sec x ( tan x - 1 )' - ( tan x - 1 ) ( sec x )' ] / ( sec x )²
d y / d x = [ sec x ( sec² x ) - ( tan x - 1 ) ( sec x tan x ) ] / ( sec x )²
d y / d x = sec x [ ( sec² x ) - ( tan x - 1 ) ( tan x ) ] / ( sec x )²
d y / d x = [ ( sec² x ) - ( tan x - 1 ) ( tan x ) ] / ( sec x )
d y / d x = ( sec² x - tan² x + tan x ) / sec x
d y / d x = ( 1 + tan x ) / sec x
d y / d x = ( 1 / sec x + tan x / sec x )
d y / d x = ( cos x + ( cos x × sin x / cos x )
d y / d x = ( cos x + sin x )
Therefore , final answer is ( sin x + cos x )
Similar questions