Math, asked by fkhan2041970, 7 months ago

differentiate y =
 \sqrt{x }  -  \frac{1}{ \sqrt{ x} }

Answers

Answered by DayDreamer2943
1

Step-by-step explanation:

 \sqrt{x}  -  \frac{1}{ \sqrt{x} }  = y \\  \frac{dy}{dx}  =  \frac{d}{dx}( {x}^{ \frac{1}{2} }  -  {x}^{ \frac{ - 1}{2} } )  \\  \:  \:   = \frac{1}{2}  {x}^{ \frac{1}{2}  - 1}  +  - ( -  \frac{1}{2}  {x}^{  \frac{ - 1}{2}  - 1 } ) \\  =  \frac{1}{2}  {x}^{  \frac{ - 1}{2} }  +  \frac{1}{2}  {x}^{ \frac{ - 3}{2} }  \\  =  \frac{1}{2 \sqrt{x} }  +  \frac{1}{ {2}^{ \frac{3}{2} } }  \\  =  \frac{1}{2 \sqrt{x} }  +  \frac{1}{2x \sqrt{x} } \\ \frac{dy}{dx}   =  \frac{1}{2 \sqrt{x} }  (1 \:  +  \frac{1}{x} )

Mark me as brainliest if u feel so

Similar questions