differentiate y w.r.t. x where y=e^(cot^-1x^4)^7
Answers
Answered by
2
we need to know the differential of cot^-1 x. first I found that because I dont remember its formula. differential of x^4 = 4x^3 and Ln y = 1/y
We use the chain rule of differentiation for this.
===========================
We use the chain rule of differentiation for this.
===========================
kvnmurty:
no no.. i will explain in simple terms...
Answered by
2
y=e^(cot inverse x^4)^7
dy/dx= (e^cot inverse x^4)^7 d/dx (cot inverse x^4)^7
dy/dx= e^(cot inverse x^4)^7 7(cot inverse x^4)^6 . d/dx (cot^-1x)
dy/dx= e^(cot inverse x^4)^7 ×7 (cot^-1x^4)^6. -(1/1+(x^4)^2) d/dx x^4
dy/dx=e^(cot inverse x^4)^7×7(cot inverse x^4)^6 . (-1/1+(x^4)^2) . 4(x^3)
this is the differentiation of this function
dy/dx= (e^cot inverse x^4)^7 d/dx (cot inverse x^4)^7
dy/dx= e^(cot inverse x^4)^7 7(cot inverse x^4)^6 . d/dx (cot^-1x)
dy/dx= e^(cot inverse x^4)^7 ×7 (cot^-1x^4)^6. -(1/1+(x^4)^2) d/dx x^4
dy/dx=e^(cot inverse x^4)^7×7(cot inverse x^4)^6 . (-1/1+(x^4)^2) . 4(x^3)
this is the differentiation of this function
Similar questions