Physics, asked by rajnidavender81, 10 months ago

Differentiate y w.r.t x y=AsinWx + AcosWx

Answers

Answered by nirman95
0

y = A \sin( \omega x)  + A \cos( \omega x)

 =  >  \dfrac{dy}{dx} =  \dfrac{d \{A \sin( \omega x)  + A \cos( \omega x)  \}}{dx}

 =  >  \dfrac{dy}{dx} =  \dfrac{d  \{A \sin( \omega x)  \}}{dx} +  \dfrac{d \{A \cos( \omega t) \} }{dx}

Applying Chain rule , we get :

 =  >  \dfrac{dy}{dx}  = A \omega \cos( \omega t)  - A \omega \sin( \omega t)

 =  >  \dfrac{dy}{dx}  = A \omega  \{\cos( \omega t)  -  \sin( \omega t)  \}

So final answer :

  \boxed{ \red{ \bold{ \dfrac{dy}{dx}  = A \omega  \{\cos( \omega t)  -  \sin( \omega t)  \}}}}

Basic formulas for differentiation used here :

1) \:  \:  \: f(x) =  \cos(x)

 =  >  \dfrac{d \{f(x) \}}{dx}  =  -  \sin(x)

2) \:  \:  \: f(x) =  \sin(x)

 =  >  \dfrac{d \{f(x) \}}{dx}  =   \cos(x)

Similar questions