Math, asked by sivakilaru1378, 10 months ago

Differentiate y wrt x , y=( 1+sin^2x)^2 + (1+cos^2x)^3

Answers

Answered by SrijanShrivastava
0

y = (1 +  \sin ^{2} ( {x} ) ) ^{2}  + ( {1 +  { \cos ^{2} (x) } )}^{3}

So; The first derivative can be given as:

 \frac{dy}{dx}  =  \frac{d}{dx} (1 + sin ^{2} x) ^{2}  +  \frac{d}{dx} (1 +  {cos}^{2} x) ^{ 3}

Let; n = 1 + sin²x and u = 1 + cos²x

 \frac{dy}{dx}  =  \frac{d}{dn} (n) ^{2} . \frac{d}{dx} (1 +   {sin}^{2} x) +  \frac{d}{du} (u) ^{3} . \frac{d}{dx} (1 +  {cos}^{2} x)

 \frac{dy}{dx}  = 2(1 + sin {}^{2} x).(2)( \cos(x) ) + 3(1 + cos ^{2} x) {}^{2} (2)( - sinx)

 \frac{dy}{dx}  = 4cosx + 4 \sin {}^{2} x. \: cosx  - 6 sinx.(1 + cos {}^{2} x) {}^{2}

 \frac{dy}{dx}  = 4 \sin {}^{3} (x)  \cos(x)  -  \sin(2x)  - 12cos {}^{3} (x) \sin(x)  - 6 \cos {}^{5} (x)  \sin(x)

Similar questions