Math, asked by duragpalsingh, 4 months ago

differentiatie (sinx.cos^2 x + cosx. sin^2 x)​

Answers

Answered by XxHeartHeackerJiyaxX
2

Answer:

Let u=sin2x;v=cos2x

On differentiating w.r.t x respectively, we get

dxdu=2sinxcosx=sin2x

dxdv=−2cosxsinx=−sin2x

Now, dvdu=dv/dxdu/dx

=−sin2xsin2x=−1

Answered by Anonymous
9

Solution

 \to \sf \:  \dfrac{d(sinx.cos^{2}x + cosx.sin^{2}x) }{dx}

We Use this Properties

 \sf \to \:  \dfrac{d(f(x)  \pm g(x))}{dx}  =  \dfrac{d(f(x))}{dx}  \pm \dfrac{d(g(x))}{dx}

 \sf \to \:  \dfrac{d(sinx.cos ^{2}x) }{dx}  +  \dfrac{d(cosx.sin^{2}x) }{dx}

Now Using UV method

 \sf \to \:  \dfrac{d(uv)}{dx}  = v   \bigg(\dfrac{du}{dx}  \bigg) + u \bigg( \dfrac{dv}{dx} \bigg)

Using this

 \sf \to \: cos^{2} x \dfrac{d(sinx)}{dx}  + sinx \dfrac{d(cos {}^{2}x) }{dx}  + sin ^{2}x \dfrac{d(cosx)}{dx}   + cosx \dfrac{d(sin ^{2} x)}{dx}

 \sf \to \: cos^{2} x \times cosx + sinx  \times - 2cosxsinx + sin^{2} x \times  - sinx + cosx \times 2sinxcosx

 \sf \to \: cos ^{3} x  - sinx \: sin2x  - sin^{3}  + cos \: sin2x

\sf \to \: cos ^{3} x    - sin^{3}  + cos \: sin2x  - sinx \: sin2x

Answer

\sf \to \: cos ^{3} x    - sin^{3}  + cos \: sin2x  - sinx \: sin2x

Similar questions