Math, asked by Vijeth001, 11 months ago

differentiation if X = A cos cube theta y = a sin cube theta prove that DY by DX is equal to minus 3 root of y by x ​

Attachments:

Answers

Answered by MaheswariS
9

Given:

x=a\;cos^3\theta\;\;and\;\;y=a\;sin^3\theta

First we eliminate \theta from these equations

\frac{x}{a}=cos^3\theta

(\frac{x}{a})^\frac{1}{3}=cos\theta

(\frac{x}{a})^\frac{2}{3}=cos^2\theta

similarly

(\frac{y}{a})^\frac{2}{3}=sin^2\theta

Adding these equations, we get

(\frac{x}{a})^\frac{2}{3}+(\frac{y}{a})^\frac{2}{3}=cos^2\theta+sin^2\theta=1

\implies\bf\;x^\frac{2}{3}+y^\frac{2}{3}=a^\frac{2}{3}

Differentiate with respect to x

\frac{2}{3}x^\frac{-1}{3}+\frac{2}{3}y^\frac{-1}{3}\;\frac{dy}{dx}=0

\implies\;x^\frac{-1}{3}+y^\frac{-1}{3}\;\frac{dy}{dx}=0

\implies\;y^\frac{-1}{3}\;\frac{dy}{dx}=-x^\frac{-1}{3}

\implies\frac{dy}{dx}=-\frac{x^\frac{-1}{3}}{y^\frac{-1}{3}}

\implies\frac{dy}{dx}=-\frac{y^\frac{1}{3}}{x^\frac{1}{3}}

\implies\boxed{\bf\frac{dy}{dx}=-\sqrt[^3]{\frac{y}{x}}}

Similar questions