Math, asked by jeeaspirant1787, 1 month ago

Differentiation Jee. Differentiate log_2(log_3(log_5 (x)))

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

The given function is

\rm :\longmapsto\: log_{2}( log_{3}( log_{5}(x) ) )

Let we assume that

\rm :\longmapsto\: y \:  =  \: log_{2}( log_{3}( log_{5}(x) ) )

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y \:  =  \dfrac{d}{dx}\: log_{2}( log_{3}( log_{5}(x) ) )

We know,

 \red{\boxed{ \rm{ \:  \: \dfrac{d}{dx} log_{a}(x) =  \frac{1}{xloga} \:  \: }}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ log_{3}( log_{5}(x) ) log2}\dfrac{d}{dx}log_{3}( log_{5}(x)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ log_{3}( log_{5}(x) )log2} \times \dfrac{1}{ log_{5}(x)log3 } \dfrac{d}{dx}log_{5}(x)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ log_{3}( log_{5}(x) )log2} \times \dfrac{1}{ log_{5}(x)log3 } \times  \dfrac{1}{xlog5}

Hence,

 \red{\boxed{ \rm{ \:  \:  \:  \:\dfrac{dy}{dx} = \dfrac{1}{x log_{3}( log_{5}(x)) log_{5}(x) log2log3log5} \:  \:  \: }}}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions