Physics, asked by adityapandey74, 8 months ago

Differentiation of 3x²+4x+3 with respect to x is​

Answers

Answered by Anonymous
15

ANSWER:

  • Differentiation of 3x² + 4x + 3 = 6x + 4

 \\ \\

GIVEN:

  • 3x² + 4x + 3

 \\ \\

TO DIFFERENTIATE:

  • 3x² + 4x + 3 with respect to x.

 \\ \\

EXPLANATION:

 \sf \dashrightarrow \dfrac{d}{dx} (3 {x}^{2}  + 4x + 3) \\  \\  \\

\boxed{ \bold{ \large{ \pink{ \dfrac{d}{dx}  {x}^{n}  = n {x}^{n - 1}}}}}  \\  \\  \\

\boxed{ \bold{ \large{ \blue{ \dfrac{d}{dx} k  = 0}}}}  \\  \\  \\

 \sf \dashrightarrow  2(3 {x}^{2 - 1})  + 1(4 {x}^{1 - 1})  + 0 \\  \\  \\

 \sf \dashrightarrow  6 {x}^{1} + 4 {x}^{0} \\  \\  \\

\boxed{ \bold{ \large{  \red{  {a}^{0}   = 1}}}}  \\  \\  \\

 \sf \dashrightarrow  6x+ 4 \\  \\  \\

 \sf \dashrightarrow \dfrac{d}{dx} (3 {x}^{2}  + 4x + 3) = 6x + 4 \\  \\  \\

Hence the differentiation of 3x² + 4x + 3 = 6x + 4.

 \\ \\

EXTRA CALCULATION:

TO INTEGRATE:

  • 3x² + 4x + 3

 \\ \\

EXPLANATION:

 \displaystyle\sf \longmapsto \int (3 {x}^{2}  + 4x + 3) \\  \\  \\

\boxed{ \bold{ \large{ \orange{ \int  {x}^{n}  = \dfrac{{x}^{n +1}}{x+1}+C}}}}  \\  \\  \\

 \sf \longmapsto  3\bigg(\dfrac{x^{2+1}}{2+1}\bigg)+4\bigg(\dfrac{x^{1+1}}{1+1}\bigg)+3\bigg(\dfrac{x^{0+1}}{0+1}\bigg)+C\\  \\  \\

 \sf \longmapsto  3\bigg(\dfrac{x^{3}}{3}\bigg)+4\bigg(\dfrac{x^{2}}{2}\bigg)+3\bigg(\dfrac{x^{1}}{1}\bigg)+C\\  \\  \\

 \sf \longmapsto x^3+2x^2+3x+C\\  \\  \\

 \displaystyle\sf \longmapsto \int (3 {x}^{2}  + 4x + 3) = x^3+2x^2+3x+C \\  \\  \\

Hence the integration of 3x² + 4x + 3 = x³ + 2x² +3 x + C.

Similar questions