Math, asked by ghhg791, 1 year ago

differentiation of cot inverse x

Answers

Answered by Explode
3
Differentiation of
 \cot^{ - 1}x \: is \:  - -  -  -  -
- cosec x cot x



Hope it will help you .
Answered by MaheswariS
0

Answer:

\frac{d(cot^{-1}x)}{dx}=\frac{-1}{1+x^2}

Step-by-step explanation:

Formula used:

1.tan^{-1}x+cot^{-1}x=\frac{\pi}{2}

2.\frac{d(tan^{-1}x)}{dx}=\frac{1}{1+x^2}

Now,

tan^{-1}x+cot^{-1}x=\frac{\pi}{2}

Differentiate with respect to 'x'

\frac{d(tan^{-1}x)}{dx}+\frac{d(cot^{-1}x)}{dx}=\frac{d(\frac{\pi}{2})}{dx}

\frac{1}{1+x^2}+\frac{d(cot^{-1}x)}{dx}=0

\frac{d(cot^{-1}x)}{dx}=\frac{-1}{1+x^2}

Similar questions