Physics, asked by rameshnagamalla3675, 1 month ago

Differentiation of d/dx ( sinx)

Answers

Answered by AshMaXSiRa
2

d/DX=sin x= cosx

PLS FOLLOW ME I WILL ALWAYS GIVE YOU ORIGINAL RIGHT ANSWERS

MARK AS BRAINLIEST

THANKS THIS ANSWER BY GIVING HEART OPTION ❤️❤️ PLS ❤️❤️

GIVE ATLEAST 5 STARS

FOLLOW ME FOR YOUR MORE DOUBT SOLVING OF ALL SUBJECTS ❤️

HAVE A GREAT DAY AHEAD THANKS FOR READING ❤️

Answered by Anonymous
6

Answer:

 \therefore  \:  \:  \: \boxed{ \rm \frac{dy}{dx}sinx =  cosx}

Explanation:

 \large \rm Let  \:  \: f(x) = sinx

 \rm\therefore  \: f(x+h) = sin(x+h),  \: (Putting x= x + h)

We know that :-

 \rm{ \frac{dy}{dx} =   \displaystyle \lim_{ \rm h \to 0}  \frac{ \rm f(x + h) - f(x)}{ \rm h} }

 \rm{ \frac{dy}{dx} =   \displaystyle \lim_{ \rm h \to 0}  \frac{ \rm sin(x + h) - sinx}{ \rm h} }

 \scriptsize \rm{  =   \displaystyle \lim_{ \rm h \to 0}  \frac{ \rm 2cos \frac{x + h + x}{2}  \: sin \frac{x + h  -  x}{2} }{ \rm h} } \:  [ \because \: sinC-sinD=2cos \frac{C+D}{2} \: sin \frac{C - D}{2}  ]

 \rm{  =   \displaystyle \lim_{ \rm h \to 0}  \frac{ \rm 2cos( \frac{2x + h}{2} ) sin \frac{h}{2} }{ \rm h} }

=   \displaystyle \lim_{ \rm h \to 0} \rm cos(x +  \frac{h}{2} ).  \displaystyle \lim_{ \rm h \to 0}  \rm{ \frac{sin \frac{h}{2} }{ \frac{h}{2} } }

  \rm=  cos(x +  \frac{0}{2} ) \times 1 \:  \:  [ \because \:  \displaystyle \lim_{ \rm x  \to0}   \rm\frac{sinx}{x} = 1 ]

 \rm = cos(x + 0)

 \rm = cosx

 \therefore  \:  \:  \: \boxed{ \rm \frac{dy}{dx}sinx =  cosx}

Similar questions