Math, asked by irshadahmad5026, 10 months ago

differentiation of sin 2x /tan^2x

Answers

Answered by aparnanidamanuri25
1

Answer:

-2cos^2x(2 + cot^2x)

Step-by-step explanation:

\frac{sin2x}{tan^2x}

\frac{2sinxcosx}{\frac{sin^2x}{cos^2x} }

\frac{2cos^3x}{sinx}

2 cotx cos^2x

\frac{d}{dx}(2cotx cos^2x)

2 \frac{d}{dx} (cotx cos^2x)

(d/dx) (fg)= fg’ + gf’

First of all  y  =  cos ^2 x  =  ( cos x ) ^2

Hence , y '  = 2 cos x ⋅ ( cos x ) ' = 2 cos x ⋅ ( − sin x ) = − 2 cos x ⋅ sin x = − sin 2 x

2(-cosec^2xcos^2x + cotx* -sin2x)

2(-\frac{cos^2x}{sin^2x} + \frac{cosx}{sinx} * -2 sinx cosx)

2(-\frac{cos^2x}{sin^2x} - 2cos^2x)

-2cos^2x (cosec^2x + 1)

-2cos^2x(1+cot^2x + 1)

-2cos^2x(2 + cot^2x)

Similar questions