Physics, asked by chakravortyaadish, 5 months ago

differentiation of sin^3x​

Answers

Answered by Mehaksaini100
1

Answer:

Basic formula:

d

d

x

x

n

=

n

x

n

1

d

d

x

(

sin

x

)

=

cos

x

Now, let's move to the question:

=

d

d

x

(

sin

3

x

)

=

(

3

sin

2

x

)

×

(

d

d

x

(

sin

x

)

)

=

3

sin

2

x

cos

x

It may be useful for you

Answered by Anonymous
6

To find :

Differentiation of sin³x.

Solution :

We know the composite function rule i.e,

\boxed{\bf{\dfrac{dy}{dx} = \dfrac{dy}{du} \times \dfrac{du}{dx}}}

Here in our case ,

  • dy = sin²x
  • du = sinx

Using the Composite rule and by substituting the values in it, we get :

:\implies \bf{\dfrac{dy}{dx} = \dfrac{d(sin^{3}x}{d(sin x)} \times \dfrac{d(sin x)}{dx}} \\ \\ \\

:\implies \bf{\dfrac{dy}{dx} = \dfrac{d(sin^{3}x)}{d(sin x)} \times \dfrac{d(sin x)}{dx}} \\ \\ \\

We know that the Differentiation of d(sin x)/d(x) is cos x.

By substituting it in the equation, we get :

:\implies \bf{\dfrac{dy}{dx} = \dfrac{d(sin^{3}x}{d(sin x)} \times cos x} \\ \\ \\

Now by differentiating , d(sin³x)/d(sin x) by derivative by first principle , we get :

\boxed{\bf{f'(x) = \lim_{h \to 0} \dfrac{f(x + h) - f(x)}{h}}} \\ \\ \\

:\implies \bf{f'(x) = \lim_{h \to 0} \dfrac{sin(x + h)^{3} - sin^{3}x}{h}} \\ \\ \\

By using the identity , (a + b)³ = a³ + b³ + 3a²b + 3ab² , we get :

:\implies \bf{f'(x) = \lim_{h \to 0} \dfrac{sin(x + h)^{3} - sin^{3}x}{h}} \\ \\ \\

:\implies \bf{f'(x) = \lim_{h \to 0} \dfrac{sin(x^{3} + h^{3} + 3x^{2}h + 3xh^{3}) - sin^{3}x}{h}} \\ \\ \\

:\implies \bf{f'(x) = \lim_{h \to 0} \dfrac{sin x^{3} + sin h^{3} + 3x^{2}h + 3sinxh^{3} - sin^{3}x}{h}} \\ \\ \\

:\implies \bf{f'(x) = \lim_{h \to 0} \dfrac{sin h^{3} + 3sinx^{2}h + 3sinxh^{3}}{h}} \\ \\ \\

:\implies \bf{f'(x) = \lim_{h \to 0} sin^{2}h + 3sin^{2}x + 3sinxh^{2}} \\ \\ \\

:\implies \bf{f'(x) = sin 0^{2} + 3sin^{2}x + sin3x(0)^{2}} \\ \\ \\

:\implies \bf{f'(x) = 3sin^{2}x} \\ \\ \\

Hence the Differentiation of d(sin³x)/d(sin x) is 3sin²x

Now putting it in the equation ,

\bf{\dfrac{dy}{dx} = \dfrac{d(sin^{3}x)}{d(sin x)} \times cos x}

We get ,

:\implies \bf{\dfrac{dy}{dx} = 3sin^{2}x \times cos x} \\ \\ \\

:\implies \bf{\dfrac{dy}{dx} = 3sin^{2}xcos x} \\ \\ \\

\boxed{\therefore \bf{\dfrac{dy}{dx} = 3sin^{2}xcos x}} \\ \\ \\

Hence the Differentiation of sin³x is 3sin²xcosx.

Similar questions