Math, asked by suryabhaiji143, 5 months ago

differentiation of tan^-1{x/✓(1+x²)}​

Answers

Answered by PharohX
4

Step-by-step explanation:

 {  \frac{d}{dx} (\tan^{ - 1} ( \frac{x}{ \sqrt{1 +  {x}^{2} } } ))}  \\  =  (\frac{1}{1 +  (\frac{x}{ \sqrt{1 +  {x}^{2} } } ) ^{2} } ) \times  \frac{1 \sqrt{1 +  {x}^{2} } -  \frac{x}{ 2\sqrt{1 +  {x}^{2} } }(2x) }{1 +  {x}^{2} }  \\   = \frac{1}{1 + ( \frac{ {x}^{2} }{1 +  {x}^{2} } )}  \times ( \frac{ \sqrt{1 +  {x}^{2}  }  -  \frac{ {x}^{2} }{ \sqrt{1 +  {x}^{2} } } }{1 +  {x}^{2} } ) \\  =  (\frac{1 +  {x}^{2} }{1 + 2 {x}^{2} } ) \times ( \frac{ \frac{1 +  {x }^{2} -  {x}^{2}   }{ \sqrt{1 +  {x}^{2} } }}{1 +  {x}^{2} } ) \\  = ( \frac{1 +  {x}^{2} }{1 + 2 {x}^{2} } ) \times ( \frac{1}{(1 +  {x}^{2}) ( \sqrt{1 +  {x}^{2} } )})  \\    \\ = \frac{1}{(1 + 2 {x}^{2})( \sqrt{1 +  {x}^{2} })  }  \\  \\ ans

Hlo mate hope my efforts will help u

Answered by shilpatoraskar14
0

Answer:

Sorry But I don't know the Answer

Similar questions