Math, asked by wwwonlypadhaai266200, 5 hours ago

differentiation of Tan[Sec²x]​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = tan( {sec}^{2}x)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} tan( {sec}^{2}x)

We know, .

\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}tanx =  {sec}^{2}x}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sec}^{2}( {sec}^{2}x)\dfrac{d}{dx} {sec}^{2}x

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sec}^{2}( {sec}^{2}x)\dfrac{d}{dx} {(secx)}^{2}

We know,

\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sec}^{2}( {sec}^{2}x) \times 2(secx)\dfrac{d}{dx} {(secx)}

\rm :\longmapsto\:\dfrac{dy}{dx} = 2secx \:  {sec}^{2}( {sec}^{2}x) (secx \: tanx)

\rm\implies \:\boxed{\tt{ \dfrac{dy}{dx} = 2 \: tanx \:  {sec}^{2}x \:  {sec}^{2}( {sec}^{2}x) \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions