Math, asked by lianthangpuiikhiangt, 4 hours ago

differentiation of
 \sqrt{ \tan{}^{3}x }
how to solve the
 \sqrt{ \tan{}^{3}x }


differentiation of

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \rm \: y =  \sqrt{ \tan ^{3} (x) }

Differentiating w.r.t. x,

 \rm \:  \frac{dy}{dx}  =  \frac{1} {2\sqrt{ \tan ^{3} (x) }}. \frac{d}{dx}  \{  \tan ^{3} (x) \}  \\

 \implies \rm \:  \frac{dy}{dx}  =  \frac{1} {2\sqrt{ \tan ^{3} (x) }}. \{  3\tan ^{2} (x). \sec ^{2} (x)  \}  \\

 \implies \rm \:  \frac{dy}{dx}  =  \frac{3\tan ^{2} (x). \sec ^{2} (x)  } {2\sqrt{ \tan ^{3} (x) }}   \\

 \implies \rm \:  \frac{dy}{dx}  = \frac{3}{2}   \frac{\tan ^{2} (x). \sec ^{2} (x)  } {\tan ^{  3 /2 } (x) }   \\

 \implies \rm \:  \frac{dy}{dx}  = \frac{3}{2}   \tan ^{2 -  \frac{3}{2} } (x). \sec ^{2} (x)     \\

 \implies \rm \:  \frac{dy}{dx}  = \frac{3}{2}   \tan ^{ \frac{4 - 3}{2} } (x). \sec ^{2} (x)     \\

 \implies \rm \:  \frac{dy}{dx}  = \frac{3}{2}   \tan ^{ \frac{1}{2} } (x). \sec ^{2} (x)     \\

 \implies \rm \:  \frac{dy}{dx}  = \frac{3}{2}    \sqrt{\tan (x)}. \sec ^{2} (x)     \\

Similar questions