Math, asked by ishaBTS13, 1 month ago

differentiation of
y =  \frac{2x + 5}{3x - 2}

Answers

Answered by TrustedAnswerer19
4

 \orange{ \boxed{\boxed{\begin{array}{cc}\rm \to \:given \\  \\  \rm \: y =  \frac{2x + 5}{3x - 2}  \\  \\   \rm \implies \:  \frac{dy}{dx} =  \frac{d}{dx} ( \frac{2x + 5}{3x - 2} )  \\  \\  \pink{ {\boxed{\begin{array}{cc}\rm \to \: \: we \: know \: that \\  \\  \rm \: \frac{d}{dx} ( \frac{u}{v}  ) =  \frac{v. \frac{du}{dx} - u. \frac{dv}{dx}  }{ {v}^{2} } \end{array}}}} \\  \\  \rm =  \frac{(3x - 2). \frac{d}{dx} (2x + 5) - (2x + 5). \frac{d}{dx}(3x - 2) }{ {(3x - 2)}^{2} }  \\  \\ \pink{ {\boxed{\begin{array}{cc}\rm \to \:we \: know \: that \\  \\ \hookrightarrow \rm \:  \frac{d \:  {x}^{n} }{dx} = n {x}^{n - 1}  \\  \\ \hookrightarrow \rm \: \frac{d(u  \pm \: v)}{dx}   =  \frac{d \: u}{dx}  \pm \frac{d \: v}{dx} \\  \\ \hookrightarrow \rm \:  \frac{d \: (constant)}{dx}   = 0\end{array}}}} \\  \\ </p><p>  \rm =  \frac{(3x - 2) \{ \frac{d \: 2x}{dx} +  \frac{d \: 5}{d}   \} - (2x + 5) \{ \frac{d \: 3x}{dx}  -  \frac{d \: 2}{dx}  \}}{ {(3x - 2)}^{2} } </p><p> \\  \\  \rm =  \frac{(3x - 2)(2.1 + 0) - (2x + 5)(3 .1- 0)}{ {(3x - 2)}^{2} } \\  \\  \rm = \frac{2(3x -2) - 3(2x + 5)}{ {(3x - 2)}^{2} }   \\  \\   \rm =  \frac{2(3x - 2)}{ {(3x - 2)}^{2} }  -  \frac{3(2x + 5)}{ {( 3x - 2)}^{2} }   \\  \\ \rm  = \frac{2}{3x - 2}   -  \frac{3(2x + 5)}{ {(3x - 2)}^{2} }  \\  \\  \sf = answer\end{array}}}}</p><p>

Similar questions