Differentiation of this question if dont know no need to comment
Attachments:
![](https://hi-static.z-dn.net/files/db2/d68b4b16fee2d2cd2e75a07f6e714758.jpg)
Answers
Answered by
1
integral from x1 to x2 of 1/(2x+3) dx
![I=\int \limits_{x_1}^{x_2} {\frac{1}{2x+3}} \, dx\\\\=\frac{1}{2} \int \limits_{x_1}^{x_2} \frac{1}{x+3/2} \, dx \\\\=\frac{1}{2} [ Ln(x+3/2) ]_{x_1}^{x_2}\\\\=\frac{1}{2} Ln [\frac{x_2+1.5}{x_1+1.5} ] I=\int \limits_{x_1}^{x_2} {\frac{1}{2x+3}} \, dx\\\\=\frac{1}{2} \int \limits_{x_1}^{x_2} \frac{1}{x+3/2} \, dx \\\\=\frac{1}{2} [ Ln(x+3/2) ]_{x_1}^{x_2}\\\\=\frac{1}{2} Ln [\frac{x_2+1.5}{x_1+1.5} ]](https://tex.z-dn.net/?f=I%3D%5Cint+%5Climits_%7Bx_1%7D%5E%7Bx_2%7D+%7B%5Cfrac%7B1%7D%7B2x%2B3%7D%7D+%5C%2C+dx%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D+%5Cint+%5Climits_%7Bx_1%7D%5E%7Bx_2%7D+%5Cfrac%7B1%7D%7Bx%2B3%2F2%7D+%5C%2C+dx+%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D+%5B+Ln%28x%2B3%2F2%29+%5D_%7Bx_1%7D%5E%7Bx_2%7D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D+Ln+%5B%5Cfrac%7Bx_2%2B1.5%7D%7Bx_1%2B1.5%7D+%5D)
kvnmurty:
:-)
Answered by
6
Similar questions