Math, asked by sakethreddy4812, 1 year ago

Differentiation of under root a square minus x square upon a square + x square

Answers

Answered by prem235
8

Step-by-step explanation:

in this figure you have completed answer...

Attachments:
Answered by varikuppalarajarajes
4

Answer:

Concept:

differentiation formulas such as \frac{d}{dx} (x^{n}) = nx^{n-1}

and \frac{d}{dx}(\frac{u}{v} )= \frac{v\frac{d}{dx}u- u \frac{d}{dx} v }{v^{2} }

Given:

let y= \sqrt[]{\frac{(a^{2} -x^{2}) }{(a^{2} +x^{2} )} }

To Find:

Derivative of \sqrt[]{\frac{(a^{2} -x^{2}) }{(a^{2} +x^{2} )} }

Step-by-step explanation:

y= {\frac{(a^{2} -x^{2}) }{(a^{2} +x^{2} )} }^{\frac{1}{2} }

\frac{dy}{dx} =\frac{d}{dx}  \sqrt[]{\frac{(a^{2} -x^{2}) }{(a^{2} +x^{2} )} }

\frac{1}{2} {\frac{(a^{2} -x^{2}) }{(a^{2} +x^{2} )} }^{\frac{1}{2} -1}× \frac{d}{dx} {\frac{(a^{2} -x^{2}) }{(a^{2} +x^{2} )} }

\frac{1}{2} {\frac{(a^{2} -x^{2}) }{(a^{2} +x^{2} )} }^{\frac{-1}{2} }× \frac{(a^{2} +x^{2} )\frac{d}{dx}(a^{2} -x^{2})-(a^{2} -x^{2})\frac{d}{dx} (a^{2} +x^{2})    }{(a^{2}+x^{2}  )^{2} }

\frac{1}{2} {\frac{(a^{2} -x^{2}) }{(a^{2} +x^{2} )} }^{\frac{-1}{2} }× \frac{-2x(a^{2} +x^{2} )-2(a^{2} -x^{2} )}{(a^{2} +x^{2} )^{2} }

\frac{1}{2} {\frac{(a^{2} -x^{2}) }{(a^{2} +x^{2} )} }^{\frac{-1}{2} }×\frac{-4xa^{2} }{(a^{2} +x^{2} )^{2} }

\frac{-2xa^{2} }{\sqrt{a^{2} -x^{2} }(a^{2}+x^{2} ) ^{\frac{3}{2} }  }

So,

\frac{dy}{dx}= \frac{-2xa^{2} }{\sqrt{a^{2} -x^{2} }(a^{2}+x^{2} ) ^{\frac{3}{2} }  }

Similar questions