Physics, asked by irfankhanirfan6397, 8 months ago

Differentiation of (√x+1/√x)²

Answers

Answered by BrainlyPopularman
11

GIVEN :

• A function  \rm{ \left( \sqrt{x} +  \dfrac{1}{ \sqrt{x} } \right) }^{2}

TO FIND :

• Differentiate form of given function = ?

SOLUTION :

• Let the function –

 \rm \implies y = { \left( \sqrt{x} +  \dfrac{1}{ \sqrt{x} } \right) }^{2}

• Using identity –

 \rm \implies { \left(a+b \right)}^{2}  =  {a}^{2} +  {b}^{2} + 2ab

• So that –

 \rm \implies y = { ( \sqrt{x})^{2}  +  \left( \dfrac{1}{ \sqrt{x} } \right) }^{2} + 2( \sqrt{x} ) \left( \dfrac{1}{ \sqrt{x} } \right)

 \rm \implies y = x+ \dfrac{1}{x} + 2

• We should write this as –

 \rm \implies y = x+ {x}^{ - 1} + 2

• Using formulas –

 \rm \to  \dfrac{d( {x}^{n})}{dx} = n {x}^{n - 1}

 \rm \to  \dfrac{d(constant)}{dx} = 0

• Now differentiate with respect to 'x' –

 \rm \implies  \dfrac{dy}{dx} =  \dfrac{d(x)}{dx} + \dfrac{d({x}^{ - 1})}{dx}+ \dfrac{d(2)}{dx}

 \rm \implies  \dfrac{dy}{dx} = 1+( - 1){x}^{( - 1 - 1)}+0

 \rm \implies  \dfrac{dy}{dx} = 1 - {x}^{ -2}

 \rm \implies \large{ \boxed{ \rm \dfrac{dy}{dx} = 1 - \dfrac{1}{{x}^{2}}}}

Answered by Anonymous
15

{ \huge {\underline {\underline {\rm{❥Given:}}}}}

A function  \sf(x +  \frac{1}{x}  {)}^{2}

❥To find:

Differentiation form of thegiven function;

Let the function be y

 \sf \: y = (x +  \frac{1}{x}  {)}^{2}

{\underline{ \overline {\boxed{  \sf{Identity}}}} }\\  \\   \:  \:  \:  \:  \:  \:  {\boxed{\sf{( a+  b{)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}}}

So that;

 \sf y = ( { \sqrt{x} \: ) }^{2}  +  (\frac{1}{ \sqrt{x} }  {)}^{2}  + 2( \sqrt{x} )( \frac{1}{ \sqrt{x} }  {)}^{2}

 \sf \implies y = x +  \frac{1}{x}  + 2 \\   \\ \implies  \sf \: y = x +  { x}^{ - 1}  + 2

Formula:

 \rightarrow  \sf\frac{d(x {)}^{n} }{dx}   = n {x}^{n}  - 1\:  \\   \\  \rightarrow \sf  \frac{d(constant)}{dx}  = 0

\sf \rightarrow  \frac{dy}{dx}  =  \frac{d(x)}{d(x)}  +  \frac{d( {x}^{ - 1}) }{dx}  +  \frac{d(2)}{dx}

 \implies \sf \frac{dx}{dx}  = 1 + ( - 1) {x}^{ - 1 - 1}  + 0

{  \large {  \color{red}{  \underline{ \overline \color{black} {\implies \sf  \frac{dy}{dx}  = 1 -  \frac{1}{ {x}^{2} } }}}}} \:

{ \large{ \underline {❥\sf{ \red{H} \color{magenta}{o} \color{lime}{p} \blue{e }\:   \purple{i} \pink{t } \:  \color{cyan}{h} \color{red}{e} \color{navy}{l} \color{blue}{p}{s} \:   \color{pink}{y} \orange{o} \color{purple}{u}.....}}}}

Similar questions