Math, asked by bsangmeshd, 9 days ago

differentiation of y= e to the power x (lnx.sinx+x square​

Attachments:

Answers

Answered by varadad25
7

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{dy}{dx}\:=\:e^x\:\left(\:\ln\:x\:sin\:x\:+\:\ln\:x\:\cos\:x\:+\:\dfrac{\sin\:x}{x}\:+\:x^2\:+\:2x\:\right)\:}}}

Step-by-step-explanation:

The given function is

\displaystyle{\sf\:y\:=\:e^x\:(\:ln\:x\:sin\:x\:+\:x^2\:)}

We have to find the derivative of this function.

Now,

\displaystyle{\sf\:y\:=\:e^x\:(\:\ln\:x\:sin\:x\:+\:x^2\:)}

By using product rule of differentiation,

\displaystyle{\sf\:(\:uv\:)'\:=\:u'\:v\:+\:u\:v'}

Here,

\displaystyle{\sf\:u\:=\:e^x}

\displaystyle{\sf\:v\:=\:\ln\:x\:\sin\:x\:+\:x^2}

\displaystyle{\implies\sf\:\dfrac{dy}{dx}\:=\:\dfrac{d}{dx}\:(\:e^x\:)\:(\:\ln\:x\:sin\:x\:+\:x^2\:)\:+\:\dfrac{d}{dx}\:(\:\ln\:x\:sin\:x\:+\:x^2\:)\:e^x}

\displaystyle{\implies\sf\:\dfrac{dy}{dx}\:=\:e^x\:(\:\ln\:x\:sin\:x\:+\:x^2\:)\:+\:e^x\:\left[\:\dfrac{d}{dx}\:(\:\ln\:x\:)\:\sin\:x\:+\:\dfrac{d}{dx}\:(\:\sin\:x\:)\:\ln\:x\:+\:\dfrac{d}{dx}\:(\:x^2\:)\:\right]}

\displaystyle{\implies\sf\:\dfrac{dy}{dx}\:=\:e^x\:(\:\ln\:x\:sin\:x\:+\:x^2\:)\:+\:e^x\:\left(\:\dfrac{1}{x}\:\sin\:x\:+\:\cos\:x\:\ln\:x\:+\:2x\:\right)}

\displaystyle{\implies\sf\:\dfrac{dy}{dx}\:=\:e^x\:(\:\ln\:x\:sin\:x\:+\:x^2\:)\:+\:e^x\:\left(\:\dfrac{\sin\:x}{x}\:+\:\cos\:x\:\ln\:x\:+\:2x\:\right)}

\displaystyle{\implies\sf\:\dfrac{dy}{dx}\:=\:e^x\:\left(\:\ln\:x\:sin\:x\:+\:x^2\:+\:\dfrac{\sin\:x}{x}\:+\:\cos\:x\:\ln\:x\:+\:2x\:\right)}

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:\dfrac{dy}{dx}\:=\:e^x\:\left(\:\ln\:x\:sin\:x\:+\:\ln\:x\:\cos\:x\:+\:\dfrac{\sin\:x}{x}\:+\:x^2\:+\:2x\:\right)\:}}}}

Answered by kinzal
4

 \longrightarrow In Given Question.

 y = e^x (In \: \: x \: \: sin \: \: x + x² ) \\

 \longrightarrow Now, Here we have to apply the Product rule Differentiation.

Hence,

 d \frac{uv}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \\

Where,

 \longrightarrow  \sf d \frac{uv}{dx} = Derivative Of  uv w.r.t.  x

 \longrightarrow  \sf u = Variable  u

 \longrightarrow  \sf \frac{dv}{dx} = Derivative of  v w.r.t. x

 \longrightarrow  \sf v = Variable  v

 \longrightarrow  \sf \frac{du}{dx} = Derivative of  u w.r.t. x

 \longrightarrow  \sf du = Derivative  du

Now,

 \longrightarrow According to question

  •  \sf u = e^{x}

  •  \sf v = In \: \: x \: \: sin\: \: x + x²

 \longrightarrow Now, we have to put the values

 \sf d \frac{uv}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \\

 \sf \frac{dy}{dx} = (e^x) \frac{d}{dx} (In \: \: x \: \: sin \: \: x + x² ) + (In \: \: x \: \: sin \: \: x + x² ) \frac{d(e^x)}{dx} \\

 \sf \frac{dy}{dx} = e^x (In \: \: x \: \: sin \: \: x + x²) + e^x \bigg[ \frac{d}{dx} (In \: \: x ) (sin\: \: x) + \frac{d}{dx} (sin\: \: x ) (In\: \:  x) + \frac{d}{dx} (x²) \bigg] \\

 \longrightarrow Differentiation of  \sf \frac{d}{dx} (sin \: \: x ) = cos \: \: x \\

 \sf \frac{dy}{dx} = e^x (In \: \: x \: \: sin \: \: x + x² ) + e^x \bigg(\frac{1}{x} (sin\: \: x ) + cos \: \: x (In \: \: x ) + 2x \bigg) \\

 \sf \frac{dy}{dx} = e^x (In \: \: x \: \: sin \: \: x + x² ) + e^x \bigg( \frac{sin\: \: x}{x} + cos \: \: x \: \: In \: \: x + 2x \bigg)  \\

 \longrightarrow Take common  e^x From the equation,

 \sf \underline{\boxed{ \frac{dy}{dx} = e^ x \bigg(In \: \: x \: \: sin \: \: x + x² + \frac{sin \: \: x}{x} + cos \: \: x \: \: In \: \: x + 2x \bigg) }} \\

----------------------

I hope it helps you ❤️✔️

Similar questions