Physics, asked by raj1235412, 9 months ago

differentiation of y=
 {(4 {x}^{2} - 2x) }^{2}

Correct answer will be marked as brainliest!!!!!

Answers

Answered by Anonymous
1

Given ,

The function is

  •  \sf{y = {(4 {x}^{2} - 2x) }^{2}}

Differentiating wrt x , we get

 \tt \frac{dy}{dx}  =  \frac{d {(4 {x}^{2} - 2x) }^{2}}{dx}

  \tt \frac{dy}{dx}  = 2(4 {x}^{2} - 2x)  \times \frac{d(4 {x}^{2} - 2x)}{dx}

\tt \frac{dy}{dx}  = (8 {x}^{2}  - 4x)  \times  (8x - 2)

 \tt\frac{dy}{dx}  = 64 {x}^{3}  - 16 {x}^{2}  - 32 {x}^{2}   + 8x

 \tt \frac{dy}{dx}  = 64{x}^{3} - 48 {x}^{2}   + 8x

  \tt \frac{dy}{dx}  = 8x(8 {x}^{2} - 6x + 1)

Remmember :

  \implies \tt \frac{d {(x)}^{n} }{dx}  = n {(x)}^{n - 1}

 \implies \tt \frac{d(u  \pm v)}{dx}  =  \frac{du}{dx}  \pm \frac{dv}{dx}

Similar questions