Physics, asked by kumar5498, 9 months ago

Differentiation of y =(x+1)^2(x^2+2x)

Answers

Answered by kaushik05
26

 \huge \pink{ \mathfrak{solution}}

To Differentiate:

y \:  = ( {x + 1)}^{2} ( {x}^{2}  + 2x)

First solve Y

 \implies \: y = ( {x + 1)}^{2} ( {x}^{2}  + 2x) \\  \\  \implies \: y = ( {x}^{2}  + 1 + 2x)( {x}^{2}  + 2x) \\  \\  \implies \: y =  {x}^{4}  + 2 {x}^{3}  +  {x}^{2}  + 2x + 2 {x}^{3}  + 4 {x}^{2}  \\  \\  \implies \: y =  {x}^{4}  + 4 {x}^{3}  + 5 {x}^{2}  + 2x

Now Differentiate w.r.t X

 \implies \:  \frac{dy}{dx}  =  \frac{d}{dx} ( {x}^{4}  + 4 {x}^{3}  + 5 {x}^{2}  + 2x) \\  \\  \implies \:  \frac{dy}{dx}  = 4 {x}^{4 - 1}  + 4(3) {x}^{3 - 1}  + 5(2) {x}^{2 - 1}  + 2 {x}^{1 - 1}  \\  \\  \implies \:  \frac{dy}{dx}  = 4 {x}^{3}  + 12 {x}^{2}  + 10x + 2

Formula used:

 \star \boxed{ \bold{ \red{  \frac{d}{dx}  {x}^{n}  = n {x}^{n - 1} }}} \\

Answered by parry8016
1

Explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions