Math, asked by atharvhadawale, 11 months ago

Differentiation of y= x raise to root x


Please don't give foul answers​

Answers

Answered by Anonymous
1

Step-by-step explanation:

y = x^√x

Taking log

logy = √xlogx

D . w .r .to .x

1/y * dy/dx = √x (1/x) + logx * 1/2√x

1/y * dy/dx = 1/√x + logx / 2√

1/y * dy/dx = (2+logx)/2√x

dy/dx = (2y+logx^y)/2x

Answered by Anonymous
2

Answer:

\large\boxed{\sf{{ {x} }^{ (\sqrt{x}-\frac{1}{2}) } (1 +  \frac{ logx }{2} )}}

Step-by-step explanation:

y =  {x}^{ \sqrt{x} }

Taking log both sides, we get

 =  >  log(y)  =  \sqrt{x}  log(x)

Concept Map :-

  •  \dfrac{d}{dx}  log(x)  =  \dfrac{1}{x}

  •  \dfrac{d}{dx} uv = u \dfrac{dv}{dx}  + v \dfrac{du}{dx}

  •  \dfrac{d}{dx}  {x}^{n}  = n {x}^{n - 1}

Now, differentiate both sides wrt x, we get

 =  >  \dfrac{1}{y}  \dfrac{dy}{dx}  =  \sqrt{x}  \dfrac{d}{dx}  log(x)  +   log(x)  \dfrac{d}{dx}  \sqrt{x}  \\  \\  =  >  \frac{1}{y}  \frac{dy}{dx}  =  \sqrt{x}  \times  \frac{1}{x}  +  log(x)  \times  \frac{1}{2 \sqrt{x} }  \\  \\  =  >  \frac{1}{y}  \frac{dy}{dx}  =  \frac{1}{ \sqrt{x} }  +  \frac{ log(x) }{2 \sqrt{x} }  \\  \\  =  >  \frac{dy}{dx}  = y( \frac{1}{ \sqrt{x} }  +  \frac{ log(x) }{2 \sqrt{x} } ) \\  \\  =  >  \frac{dy}{dx}  =  {x}^{ \sqrt{x} } ( \frac{1}{ \sqrt{x} }  +  \frac{ log(x) }{2 \sqrt{x} } ) \\  \\  =  >  \frac{dy}{dx}  =  { x}^{ (\sqrt{x}-\frac{1}{2}) } (1 +  \frac{ logx }{2} )

Similar questions