Math, asked by Anonymous, 1 month ago

Differentiation sin x with respect to x using first principle method.

no spam here otherwise reported​

Answers

Answered by Anonymous
7

Topic :-

Differentiation - First principle method

To find :-

Differentiation of sin x

Solution :-

Let sin (x) = f(x)

‎ ‎ ‎

Apply first principle rule

  • \sf{f'(x)=\lim\limits_{h\to0} \dfrac{f(x+h)-f(x)}{h}}

‎ ‎ ‎

Substitute f(x) = sin (x)

\sf{\implies f'(x)=\lim\limits_{h\to0} \dfrac{\sin(x+h)-\sin(x)}{h}}

‎ ‎ ‎

Apply trigonometric identity :-

  • \sf sin A - sin B = 2cos\dfrac{(A + B)}{2} . sin\dfrac{ (A - B)}2

‎ ‎ ‎

\sf{\implies f'(x)=\lim\limits_{h\to0} \dfrac{2\cos \left[\dfrac{(x+h)+x}{2}\right]\times \sin\left[\dfrac{(x+h)-x}{2}\right]}{h}}

\sf{\implies f'(x)=\lim\limits_{h\to0} \dfrac{2\cos \left[\dfrac{2x+h}{2}\right]\times \sin\left[\dfrac{h}{2}\right]}{h}}

\sf{\implies f'(x)=\lim\limits_{h\to0} \dfrac{\cos \left[\dfrac{2x+h}{2}\right]\times \sin\left[\dfrac{h}{2}\right]}{ \dfrac h 2}}

\sf{\implies f'(x)=\lim\limits_{h\to0} \left \{ \cos \left[\dfrac{2x+h}{2} \right] \right \}\times  \lim \limits_{ h \to0} \left \{ \dfrac{\sin\left(\dfrac{h}{2}\right)}{  \left(\dfrac h 2 \right)} \right \}}

‎ ‎ ‎

Apply formula:-

  •  \sf \lim \limits_{x \to0} \dfrac{ \sin \: x}{x} = 1

‎ ‎ ‎

\sf{\implies f'(x)=\lim\limits_{h\to0} \left \{ \cos \left[\dfrac{2x+h}{2} \right] \right \}\times  1}

\sf{\implies f'(x)=\lim\limits_{h\to0} \cos \left[\dfrac{h}{2} + x \right] }

Now directly substitute h = 0

\sf{\implies f'(x)= \cos \left[\dfrac{0}{2} + x \right] }

\sf{\implies f'(x)= \cos \left( x \right) }

Hence differentiation of sin(x) is cos(x).

‎ ‎ ‎

More :-

  • \sf \dfrac{d}{dx}(x)=1

‎ ‎ ‎

  • \sf \dfrac{d}{dx}(x^n)=nx^{n-1}

‎ ‎ ‎

  • \sf \dfrac{d}{dx}(\cos\:x)=-\sin\:x

‎ ‎ ‎

  • \sf \dfrac{d}{dx}(\tan x)=\sec^2x

‎ ‎ ‎

  • \sf \dfrac{d}{dx}(e^x)=e^x

‎ ‎ ‎

  • \sf \dfrac{d}{dx}(\sec x)=\sec x . \tan x
Similar questions