Math, asked by ilham1107, 1 month ago

Differentiation

if \: y =  {cos}^{ - 1}  \binom{2x}{1 +  {x}^{2} }  \: then \:  \frac{dy}{dx}  =

Answers

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {cos}^{ - 1}\bigg[\dfrac{2x}{1 +  {x}^{2} } \bigg]

We know,

\boxed{ \tt{ \:  {sin}^{ - 1}x +  {cos}^{ - 1}x = \dfrac{\pi}{2} \: }}

So, using this identity, we get

\rm :\longmapsto\:y = \dfrac{\pi}{2} -  {sin}^{ - 1}\bigg[\dfrac{2x}{1 +  {x}^{2} } \bigg]

We know,

\boxed{ \tt{ \: {sin}^{ - 1}\bigg[\dfrac{2x}{1 +  {x}^{2} } \bigg] = 2 {tan}^{ - 1}x \: }}

So, using this identity, we get

\rm :\longmapsto\:y = \dfrac{\pi}{2} -  {2tan}^{ - 1}x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}\bigg[ \dfrac{\pi}{2} -  {2tan}^{ - 1}x\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{d}{dx}\dfrac{\pi}{2} - \dfrac{d}{dx} {2tan}^{ - 1}x

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}k \:  =  \: 0 \: }} \\  \\ and \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx} {tan}^{1}x =  \frac{1}{1 +  {x}^{2} } \: }} \\

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 0 - 2 \times \dfrac{1}{1 +  {x}^{2} }

\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx} =  \frac{ - 2}{1 +  {x}^{2} } \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions