Math, asked by venu052, 5 hours ago

Differentiative (2x³+3)(x²+4) with respect x​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:( {2x}^{3} + 3)( {x}^{2} + 4)

Let assume that

\rm :\longmapsto\:y = ( {2x}^{3} + 3)( {x}^{2} + 4)

\rm :\longmapsto\:y =  {2x}^{5} +  {8x}^{3} +  {3x}^{2} + 12

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y = \dfrac{d}{dx} [ {2x}^{5} +  {8x}^{3} +  {3x}^{2} + 12]

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{d}{dx}{2x}^{5} +  \dfrac{d}{dx} {8x}^{3} + \dfrac{d}{dx}  {3x}^{2} + \dfrac{d}{dx} 12

\rm :\longmapsto\:\dfrac{dy}{dx} =2 \dfrac{d}{dx}{x}^{5} + 8\dfrac{d}{dx} {x}^{3} + 3\dfrac{d}{dx}  {x}^{2} + \dfrac{d}{dx} 12

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}  {x}^{n} =  {nx}^{n - 1} \: }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx}  = 2( {5x}^{5 - 1}) + 8( {3x}^{3 - 1}) + 3( {2x}^{2 - 1} ) + 0

\rm :\longmapsto\:\dfrac{dy}{dx}  = 10{x}^{4} + 24{x}^{2} + 6{x}^{1}

\rm :\longmapsto\:\dfrac{dy}{dx}  = 10{x}^{4} + 24{x}^{2} + 6x

Hence,

\rm \implies\:\boxed{\tt{ \dfrac{dy}{dx}  = 10{x}^{4} + 24{x}^{2} + 6x \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions