Math, asked by mlpq9241, 2 months ago

differentuate sin( 1-x^2/1+x^2)​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y = sin\bigg(\dfrac{1 -  {x}^{2} }{1 +  {x}^{2} } \bigg)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx} sin\bigg(\dfrac{1 -  {x}^{2} }{1 +  {x}^{2} } \bigg)

We know that

 \boxed{ \bf{ \dfrac{d}{dx}sinx\: =  \: cosx }}

So,

\rm :\longmapsto\:\dfrac{dy}{dx}  =cos\bigg(\dfrac{1 -  {x}^{2} }{1 +  {x}^{2} } \bigg)  \: \dfrac{d}{dx}\bigg(\dfrac{1 -  {x}^{2} }{1 +  {x}^{2} } \bigg)

We know,

Quotient Rule,

 \boxed{ \bf{\dfrac{d}{dx} \frac{u}{v}  \:  =  \: \dfrac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} } }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx}  =cos\bigg(\dfrac{1-{x}^{2} }{1 +  {x}^{2} } \bigg) \dfrac{(1+{x}^{2})\dfrac{d}{dx}(1 -{x}^{2}) - (1-{x}^{2})\dfrac{d}{dx}(1+{x}^{2})}{ {(1 + {x}^{2})}^{2} }

We know,

 \boxed{ \bf{ \dfrac{d}{dx}k\:  =  \: 0}}

and

 \boxed{ \bf{ \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} }}

So, using these we get

\rm :\longmapsto\:\dfrac{dy}{dx}  =cos\bigg(\dfrac{1-{x}^{2} }{1 +  {x}^{2} } \bigg) \dfrac{(1+{x}^{2})(0 - 2x) - (1-{x}^{2})(0 + 2x)}{ {(1 + {x}^{2})}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx}  =cos\bigg(\dfrac{1-{x}^{2} }{1 +  {x}^{2} } \bigg) \dfrac{(1+{x}^{2})(- 2x) - (1-{x}^{2})(2x)}{ {(1 + {x}^{2})}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx}  = - 2x \: cos\bigg(\dfrac{1-{x}^{2} }{1 +  {x}^{2} } \bigg) \dfrac{(1+{x}^{2} +1-{x}^{2})}{ {(1 + {x}^{2})}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx}  = - 2x \: cos\bigg(\dfrac{1-{x}^{2} }{1 +  {x}^{2} } \bigg) \dfrac{(2)}{ {(1 + {x}^{2})}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx}  = - 4x \: cos\bigg(\dfrac{1-{x}^{2} }{1 +  {x}^{2} } \bigg) \dfrac{1}{ {(1 + {x}^{2})}^{2} }

Additional Information :-

 \boxed{ \bf{ \dfrac{d}{dx}cosx\:  = -   \:sinx }}

 \boxed{ \bf{ \dfrac{d}{dx}cosecx\:  = -   \:cosecx  \: cotx}}

 \boxed{ \bf{ \dfrac{d}{dx}secx\:  =  \:secx  \: tanx}}

 \boxed{ \bf{\dfrac{d}{dx}tanx \:  =  \:  {sec}^{2}x}}

 \boxed{ \bf{\dfrac{d}{dx}cotx \:  =  \:  {cosec}^{2}x}}

 \boxed{ \bf{\dfrac{d}{dx} \sqrt{x}  \:  =  \:  \frac{1}{2 \sqrt{x} } }}

 \boxed{ \bf{\dfrac{d}{dx}u.v \: =  \: v\dfrac{d}{dx}u + u\dfrac{d}{dx}v }}

Similar questions