differetiate sin2x^2
Answers
Answered by
1
Answer:
2sin4x
Explanation:
differentiate using the chain rule
∣∣ ∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aaddx(f(g(x)))=f'(g(x))g'(x)aa∣∣∣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−........(A)
here f(g(x))=sin2(2x)=(sin2x)2
⇒f'(g(x))=2sin2x
Note, 2 applications of chain rule required for g'(x)
g(x)=sin2x⇒g'(x)=cos2x.ddx(2x)=2cos2x
------------------------------------------------------------------
Substitute these values into (A)
2sin2x.2cos2x=4sin2xcos2x
Reminder∣∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aasin4x=2sin2xcos2xaa∣∣−−−−−−−−−−−−−−−−−−−−−−−−
⇒ddx(sin2(2x))=4sin2xcos2x=2sin4x
2sin4x
Explanation:
differentiate using the chain rule
∣∣ ∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aaddx(f(g(x)))=f'(g(x))g'(x)aa∣∣∣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−........(A)
here f(g(x))=sin2(2x)=(sin2x)2
⇒f'(g(x))=2sin2x
Note, 2 applications of chain rule required for g'(x)
g(x)=sin2x⇒g'(x)=cos2x.ddx(2x)=2cos2x
------------------------------------------------------------------
Substitute these values into (A)
2sin2x.2cos2x=4sin2xcos2x
Reminder∣∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aasin4x=2sin2xcos2xaa∣∣−−−−−−−−−−−−−−−−−−−−−−−−
⇒ddx(sin2(2x))=4sin2xcos2x=2sin4x
Answered by
1
Answer:
Step-by-step explanation:
brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest
Attachments:
Similar questions