Math, asked by astralis, 1 year ago

differtentian of ln(1+x)^1+x

Answers

Answered by shashankavsthi
4

y =  { ln(1 + x) }^{1 + x}  \\ taking \: log \: both \: sides \\  ln(y)  =  ln( {ln(1 + x)}^{1 + x} )  \\  ln(y)  = (1 + x)( ln( ln(1 + x) )  \\ diffrentiating \: both \: sides \: wrt \: x \\  \frac{1}{y}  \frac{dy}{dx}  =  ln( ln(1 + x) )  + (1 + x) \times  \frac{1}{ ln(1 + x) }  \times  \frac{1}{1 + x}  \\  \frac{dy}{dx}  = y( ln( ln(1 + x) )  +  \frac{1}{ ln(1 + x) }
hope it will help you.
Similar questions