Math, asked by nadiira2299, 10 months ago

Difficult questions on quadratic equations for 0

Answers

Answered by pandiyanj
0

Answer:

the question:

Solve the equation \displaystyle \frac{5}{2-x}+\frac{x-5}{x+2}+\frac{3x+8}{x^2-4}=0

2−x

5

+

x+2

x−5

+

x

2

−4

3x+8

=0. In the answer box, write the roots separated by a comma

answer:

The equation is defined for x, such that \displaystyle x-2 \ne 0; x+2 \ne 0; x^2-4 \ne 0x−2

=0;x+2

=0;x

2

−4

=0, which yield us \displaystyle x \ne \pm 2x

=±2.

\displaystyle \frac{5}{2-x}+\frac{x-5}{x+2}+\frac{3x+8}{x^2-4}=0

2−x

5

+

x+2

x−5

+

x

2

−4

3x+8

=0

\displaystyle \frac{5(x+2)}{(2-x)(x+2)}+\frac{(x-5)(2-x)}{(x+2)(2-x)}+\frac{3x+8}{x^2-4}=0

(2−x)(x+2)

5(x+2)

+

(x+2)(2−x)

(x−5)(2−x)

+

x

2

−4

3x+8

=0

Have in mind that \displaystyle \frac{3x+8}{x^2 - 4}=-\frac{3x+8}{4-x^2}

x

2

−4

3x+8

=−

4−x

2

3x+8

\displaystyle \frac{5x+10}{4-x^2}+\frac{2x-10-x^2+5x}{4-x^2}-\frac{3x+8}{4-x^2}=0

4−x

2

5x+10

+

4−x

2

2x−10−x

2

+5x

4−x

2

3x+8

=0. We don't need the denominator anymore.

\displaystyle 5x+10+7x-10-x^2-3x-8=05x+10+7x−10−x

2

−3x−8=0

\displaystyle x^2-9x+8=0x

2

−9x+8=0

\displaystyle x^2-8x-x+8=0x

2

−8x−x+8=0

\displaystyle x(x-8)-(x-8)=0x(x−8)−(x−8)=0

\displaystyle (x-1)(x-8)=0(x−1)(x−8)=0, so the roots are x=1 and x=8. The equation is defined for them, so they are both solutions.

Similar questions