Math, asked by ItsRuchikahere, 2 months ago

Diffrenciate [tex] {a}^{x} [\tex]
w.r.t. [tex]log_{a}(x)[\tex]

please answer fast
And correct give correct answer please​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Let assume that

 \red{\rm :\longmapsto\:u =  {a}^{x}}

and

 \red{\rm :\longmapsto\:v =  log_{a}(x)}

Consider,

 \red{\rm :\longmapsto\:u =  {a}^{x}}

On differentiating both sides w. r. t. x, we get

 {\rm :\longmapsto\:\dfrac{d}{dx} u =\dfrac{d}{dx}  {a}^{x}}

 {\rm :\longmapsto\:\dfrac{du}{dx} =  {a}^{x}} log(a)  -  -  - (1)

Consider,

 \red{\rm :\longmapsto\:v =  log_{a}(x)}

On differentiating both sides w. r. t. x, we get

 {\rm :\longmapsto\:\dfrac{d}{dx}v = \dfrac{d}{dx} log_{a}(x)}

 {\rm :\longmapsto\:\dfrac{dv}{dx} = \dfrac{1}{x log(a)}}  -  -  - (2)

Since, we have to differentiate u w. r. t. v,

So,

\rm :\longmapsto\:\dfrac{du}{dv} = \dfrac{du}{dx} \div \dfrac{dv}{dx}

\rm :\longmapsto\:\dfrac{du}{dv} =  {a}^{x} log(a) \div \dfrac{1}{x log(a) }

\bf:\longmapsto\:\dfrac{du}{dv} = x \: {a}^{x}{(loga)}^{2}

Additional Information :-

\green{\boxed{ \bf{ \:\dfrac{d}{dx}k = 0 }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}x = 1}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} {e}^{x}  =  {e}^{x} }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} {a}^{x}  =  {a}^{x} log(a)  }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}logx =  \dfrac{1}{x}}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}sinx = cosx }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}cosx =  -  \: sinx }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}cotx =  -  \:  {cosec}^{2} x }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}tanx =   \:  {sec}^{2} x }}}

Similar questions