diffrential equation for circle
Answers
Answer:
Let the the circle be of radius r. Then,
(x−rcosθ)2+(y−rsinθ)2=r2(1)
2(x−rcosθ)+2(y−rsinθ)y′=0(2)
2x−2rcosθ+2yy′−2rsinθy′=0
1+yy′′+(y′)2−rsinθy′′=0
rsinθ=1+yy′′+(y′)2y′′(3)
Substitute (3) in (1),
(x−rcosθ)2+(y−rsinθ)2=r2
x2−2rxcosθ+y2−2rysinθ+r2sin2θ=r2sin2θ
x2−2rxcosθ+y2−2rysinθ=0
rcosθ=x2+y2−2rysinθ2x(4)
Now substitute (3) in (4) and then (3) and (4) in (2).
It is likely that there may be an easier way than this.
Step-by-step explanation:
hope it help u
Answer:
Let the the circle be of radius r. Then,
(x−rcosθ)2+(y−rsinθ)2=r2(1)
2(x−rcosθ)+2(y−rsinθ)y′=0(2)
2x−2rcosθ+2yy′−2rsinθy′=0
1+yy′′+(y′)2−rsinθy′′=0
rsinθ=1+yy′′+(y′)2y′′(3)
Substitute (3) in (1),
(x−rcosθ)2+(y−rsinθ)2=r2
x2−2rxcosθ+y2−2rysinθ+r2sin2θ=r2sin2θ
x2−2rxcosθ+y2−2rysinθ=0
rcosθ=x2+y2−2rysinθ2x(4)
Now substitute (3) in (4) and then (3) and (4) in (2).
It is likely that there may be an easier way than this.
Step-by-step explanation:
hope it help u