diffrentiate cos (x+a)
Answers
Answered by
10
Step-by-step explanation:
We have y=y=cos(x+y)cos(x+y)
Differentiating, dydx=−sin(x+y)(x+y)′dydx=−sin(x+y)(x+y)′ [Chain rule]
⇒dydx=−sin(x+y)(1+dydx)⇒dydx=−sin(x+y)(1+dydx)
Rewriting, dydx=−sin(x+y)−sin(x+y)⋅dydxdydx=−sin(x+y)−sin(x+y)⋅dydx
⇒dydx+sin(x+y)dydx=−sin(x+y)⇒dydx+sin(x+y)dydx=−sin(x+y)
Taking dydxdydx common,
dydx(1+sin(x+y))=−sin(x+y)dydx(1+sin(x+y))=−sin(x+y)
Bringing (1+sin(x+y))(1+sin(x+y)) to other side,
Similar questions