Diffrentiate sinxcos3x. Please explain the solution.
Answers
Answered by
6
Answer:
y = sinxcos3x
we know ,
if, y=uv
then,
dy/dx=[ u. dv/dx+v.du/dx]
therefor
y=sinxcos3x
dy/dx=sinx.d/dx(cos3x)
+cos3x.d/dx(sinx)
= sinx. (-sin3x. 3)
+cos3x. cosx
= -3sin^2 3x+cos^2 3x
final answer is -3sin^2 3X +cos^2 3x
Similar questions