Math, asked by ItzMuItipIeThanker, 2 months ago


Diffrentiate \sf \large  [log \{log(logx) \}] {}^{2} w.r.t x

Answers

Answered by SparklingBoy
107

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

▪Question :-

Differentiate  [\bf log \{log(logx) \}] {}^{2} w.r.t x

___________________________

▪Let :-

 \bf y  = [log \{log(logx) \}] {}^{2}

___________________________

▪To Calculate :-

 \bf \large \red{dy/dx}

___________________________

▪Formulae Used :-

 \bigstar \:  \bf  \frac{d}{dx} f(x) {}^{2}  = 2f(x) \frac{d}{dx} f(x) \\  \\   \bigstar   \bf\frac{d}{dx} log(f(x)) =  \frac{1}{f(x)} . \frac{d}{dx} f(x)

___________________________

▪Solution :

 \bf y  = [log \{log(logx) \}] {}^{2}

Differentiating both side w.r.t x

 \bf\frac{dy}{dx}  =  \frac{d}{dx} [log \{log(logx) \}] {}^{2}  \\  \\  = \sf2[log \{log(logx) \}] .\frac{d}{dx}  [log \{log(logx) \}] \\  \\  = \sf 2[log \{log(logx) \}]  \times   \frac{1}{ \{log(log \: x) \} } \\  \times     \sf\frac{ d}{dx}   \{log{(log \: x)} \} \\  \\   = \sf 2[log \{log(logx) \}]  \times   \frac{1}{ \{log(log \: x) \} } \\  \times   \sf\frac{1}{log \: x}  \times \frac{d}{dx}log \: x \\  \\  = \sf 2[log \{log(logx) \}]  \times   \frac{1}{ \{log(log \: x) \} } \\  \times   \sf\frac{1}{log \: x}  \times  \frac{1}{x}\\\\ \bf \frac{dy}{dx}=\frac{2[log \{log(logx) \}]}{x log \: x.\{log(log \: x) \}}

 \mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required \:  \:  \text{ A}nswer.}

__________________________

Answered by Anonymous
11

\huge\red{\underline{\underline{\bf Answer}}}

▪Let :-

\bf y  = [log \{log(logx) \}] {}^{2}y =[log{log(logx)}] </p><p>2

___________________________

▪To Calculate :-

\bf \large \red{dy/dx}

___________________________

▪Formulae Used :-

\begin{gathered} \bigstar \:  \bf  \frac{d}{dx} f(x) {}^{2}  = 2f(x) \frac{d}{dx} f(x) \\  \\   \bigstar   \bf\frac{d}{dx} log(f(x)) =  \frac{1}{f(x)} . \frac{d}{dx} f(x)\end{gathered}

___________________________

▪Solution :

\bf y  = [log \{log(logx) \}] {}^{2}y =[log{log(logx)}]  {}^{2}

Differentiating both side w.r.t x

\begin{gathered} \bf\frac{dy}{dx}  =  \frac{d}{dx} [log \{log(logx) \}] {}^{2}  \\  \\  = \sf2[log \{log(logx) \}] .\frac{d}{dx}  [log \{log(logx) \}] \\  \\  = \sf 2[log \{log(logx) \}]  \times   \frac{1}{ \{log(log \: x) \} } \\  \times     \sf\frac{ d}{dx}   \{log{(log \: x)} \} \\  \\   = \sf 2[log \{log(logx) \}]  \times   \frac{1}{ \{log(log \: x) \} } \\  \times   \sf\frac{1}{log \: x}  \times \frac{d}{dx}log \: x \\  \\  = \sf 2[log \{log(logx) \}]  \times   \frac{1}{ \{log(log \: x) \} } \\  \times   \sf\frac{1}{log \: x}  \times  \frac{1}{x}\\\\ \bf \frac{dy}{dx}=\frac{2[log \{log(logx) \}]}{x log \: x.\{log(log \: x) \}} \end{gathered}

Similar questions