Math, asked by Arunav5, 1 year ago

diffrentiation (x^2+y^2)^2=xy


Arunav5: ans. is [y-4x(x^2+y^2)]/4y(x^2+y^2)-x

Answers

Answered by kvnmurty
0
(x^2+y^2)^2=xy\\ \\we\ know\ \frac{d}{dx}f(g(x,y))=f'(g(x,y))*g'(x,y)\\ \\2(x^2+y^2)^{2-1} . \frac{d}{dx}(x^2+y^2) = x . \frac{dy}{dx} + y . 1\\ \\2(x^2+y^2) . (2 x + 2 y \frac{dy}{dx})=x. \frac{dy}{dx}+y\\ \\4(x^2+y^2)x+4(x^2+y^2)y.\frac{dy}{dx}-x.\frac{dy}{dx}=y\\ \\4(x^2+y^2)y.\frac{dy}{dx}-x.\frac{dy}{dx}=y-4(x^2+y^2)x\\ \\ (4x^2y+4y^3-x).\frac{dy}{dx}=y-4(x^3+y^2x)\\ \\\frac{dy}{dx}=\frac{y-4x^3-4y^2x}{(4x^2y+4y^3-x)}\\

================================

Let\ w = y^2\\.\ \ \ \frac{dw}{dx}=\frac{dw}{dy} * \frac{dy}{dx} =2y^{2-1}*\frac{dy}{dx}\\ \\Let\ z=(x^2+y^2)\\ \\\frac{dz}{dx} = \frac{d(x^2)}{dx}+\frac{d(y^2)}{dx}=2x+\frac{d(y^2)}{dx}=2x+\frac{d(y^2}{dy}*\frac{dy}{dx}=2x+2y\frac{dy}{dx}\\ \\let\ f=z^2\\ \\\frac{df}{dx}=\frac{d(z^2)}{dz}*\frac{dz}{dx}=2 z \frac{dz}{dx}= 2(x^2+y^2)(2x+2y\frac{dy}{dx})\\



kvnmurty: the answer is same as what u gave
Arunav5: i cant understand the 3 step -
kvnmurty: please see now
Similar questions