Math, asked by prasadgarad30, 18 days ago

difine integration π limit 0 x sin ²x
dx​

Answers

Answered by anindyaadhikari13
12

\textsf{\large{\underline{Solution}:}}

We have to evaluate the given definite integral.

 \displaystyle \rm = \int^{\pi}_{0}x \sin^{2}(x) \: dx

We will use integration by parts to solve this problem.

 \rm \longrightarrow u = x

 \rm \longrightarrow dv= \sin^{2}(x)  \: dx

 \rm \longrightarrow du = dx

 \rm \longrightarrow v= \dfrac{x}{2} - \dfrac{ \sin(2x) }{4}

Apply integration by parts:

 \displaystyle \rm \longrightarrow \int u \: dv = uv - \int v \: du

 \displaystyle \rm =x \bigg( \dfrac{x}{2} -\dfrac{ \sin2x}{4} \bigg) - \int \bigg( \dfrac{x}{2}  -  \dfrac{ \sin2x}{4} \bigg) \: dx

 \displaystyle \rm =  \dfrac{ {x}^{2} }{2} -\dfrac{x \sin2x}{4} - \int \bigg( \dfrac{x}{2}  -  \dfrac{ \sin2x}{4} \bigg) \: dx

 \displaystyle \rm =  \dfrac{ {x}^{2} }{2} -\dfrac{x \sin2x}{4} - \int \dfrac{x}{2}  \: dx+  \int \dfrac{ \sin2x}{4}  \: dx

 \displaystyle \rm =  \dfrac{ {x}^{2} }{2} -\dfrac{x \sin2x}{4} -  \dfrac{1}{2} \int x \: dx+  \int \dfrac{ \sin2x}{4}  \: dx

 \displaystyle \rm =  \dfrac{ {x}^{2} }{2} -\dfrac{x \sin2x}{4} -  \dfrac{ {x}^{2} }{2 \times 2} +  \int \dfrac{ \sin2x}{4}  \: dx

 \displaystyle \rm =  \dfrac{ {x}^{2} }{2} -\dfrac{x \sin2x}{4} -  \dfrac{ {x}^{2} }{4} +  \int \dfrac{ \sin2x}{4}  \: dx

 \displaystyle \rm =  \dfrac{ {x}^{2} }{2} -\dfrac{x \sin2x}{4} -  \dfrac{ {x}^{2} }{4} +   \dfrac{1}{4} \int \sin2x  \: dx

 \displaystyle \rm =  \dfrac{ {x}^{2} }{2} -\dfrac{x \sin2x}{4} -  \dfrac{ {x}^{2} }{4} +   \dfrac{1}{4} \times \dfrac{ -  \cos2x}{2}

 \displaystyle \rm =  \dfrac{ {x}^{2} }{2} -\dfrac{x \sin2x}{4} -  \dfrac{ {x}^{2} }{4}  -  \dfrac{\cos2x}{8}

 \displaystyle \rm =  \dfrac{ {x}^{2} }{4} -\dfrac{x \sin2x}{4} -  \dfrac{\cos2x}{8}

Now apply the limits:

 \displaystyle \rm =  \dfrac{ {x}^{2} }{4} -\dfrac{x \sin2x}{4} -  \dfrac{\cos2x}{8} \bigg|^{\pi}_{0}

 \displaystyle \rm =  \bigg( \dfrac{ {\pi}^{2} }{4} -\dfrac{\pi\sin2\pi}{4} -  \dfrac{\cos2\pi}{8} \bigg) - \bigg( \dfrac{ {0}^{2} }{4} -\dfrac{0\sin0}{4} -  \dfrac{\cos0}{8} \bigg)

 \displaystyle \rm =  \bigg( \dfrac{ {\pi}^{2} }{4}-  \dfrac{1}{8} \bigg) - \bigg(-  \dfrac{1}{8} \bigg)

 \displaystyle \rm =   \dfrac{ {\pi}^{2} }{4}-  \dfrac{1}{8} + \dfrac{1}{8}

 \displaystyle \rm =   \dfrac{ {\pi}^{2} }{4}

★ Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}

Similar questions