Physics, asked by sasik3534, 1 month ago

difine orbital velocity ​

Answers

Answered by Sнιναηι
3

here's your answer ⭐

Due to the inertia of the moving body, the body has a tendency to move on in a straight line. But, the gravitational force tends to pull it down. The orbital path, thus elliptical or circular in nature, represents a balance between gravity and inertia. Orbital velocity is the velocity needed to achieve a balance between gravity’s pull on the body and the inertia of the body’s motion. For a satellite revolving around the Earth, the orbital velocity of the satellite depends on its altitude above Earth. The nearer it is to the Earth, the faster the required orbital velocity.

A satellite runs into traces of Earth’s atmosphere, at lower altitudes, which creates drag. This drag causes decay the orbit, eventually making the satellite to fall back into the atmosphere and burn itself up.

Derivation of Orbital Velocity

To derive the orbital velocity, we concern ourselves with the following two concepts:

  • Gravitational Force
  • Centripetal Force

It is important to know the gravitational force because it is the force that allows orbiting to exist. A central body exerts a gravitational force on the orbiting body to keep it in its orbit. Centripetal force is also important, as this is the force responsible for circular motion.

hope it helps you

thanks ✌️

Answered by brosbro
1

Answer:

In gravitationally bound systems, the orbital speed of an astronomical body or object is the speed at which it orbits around either the barycenter or, if one object is much more massive than the other bodies in the system, its speed relative to the center of mass of the most massive body

Explanation:

formula -

velocity = 2 pie semimajor axis in length(in meter)/orbital period

Similar questions