Math, asked by sumit7931, 3 months ago

digferentiate
d/dx (2x+5)^2​

Answers

Answered by Anonymous
3

Correct questions

  \to\sf \: Differentiate \:   \: \dfrac{d(2x + 5) {}^{2} }{dx}

Solution

We have

 \sf \to\dfrac{d(2x + 5) {}^{2} }{dx}

Now Using Chain Rule , we get

 \sf \to \: 2(2x + 5) ^{2 - 1}  \dfrac{d(2x + 5)}{dx}

 \sf \to \: 2(2x + 5) \times 2

 \sf \to4(2x + 5) = 8x + 20

Answer

 \sf \to \: 8x + 20

Method:- 2

By Simplify the equation

 \sf \to\dfrac{d(2x + 5) {}^{2} }{dx}

Now Take

 \sf \to \: (2x + 5) {}^{2}  = 4 {x}^{2}  + 25 + 2 \times 2x \times 5

 \sf \to \: (2x + 5)^{2}  = 4 {x}^{2}  + 25 + 20x

We can write as

 \sf \to \:  \dfrac{d(4 {x}^{2} + 20x + 25) }{dx}

 \sf \to \: 8x + 20

Answer

 \sf \to \: 8x + 20

Similar questions