digital butter worth filter that satisfies the following constract using bilinear tranformation assume t=1s 0.9
Answers
Answered by
0
Answer:
Step-1: Identification of filters specification
Ap=0.6;Ap=0.1;ωp=0.35π;ωs=0.7π;T=0.1sec
Now,
Ωp=2Ttan(ωp2)=12.25rad/sec
Ωs=2Ttan(ωs2)=39.25rad/sec
Step-2: Calculation of order of filter
The order of filter is given by
N>12log[1As2−11Ap2−1]log(ΩsΩp)
N≥1.72≅2
Step-3: Calculation of cut off frequency
Ωc=Ωp(1Ap2−1)12N
Ωc=10.60rad/sec
Step-4: Calculation of poles
Pk=Ωcej(N+2k+1)π2N
when k=0;
∴Po=−7.49+j7.49
when k=1;
∴P1=−7.49−j7.49
Step-5: Calculation of Transfer function H(s)
H(s)=(Ωc)N((s−Po)(s−P1))
=(10.60)2((s+749−j7.49)(s+7.49+j7.49))
∴H(s)=112.36((s+7.49)2+(7.49)2)
Conversion of analog Transfer function to digital Transfer function:
H(z)=H(s)(s=2T(z−1)(z+1)
H(z)=112.36(20((z−1)(z+1)+(7.49)2+(7.49)2
Similar questions