Dimaag lagao
A Big Challenge 4 U!!
Time 1 Day
Total Marks 100
Ek Dada
Ek Baap
Ek Pota
3no Ki Total Age 140 Years Hai
Pota jitne Month Ka Dada utne Saal ka
Pota jinte din ka Baap utne week ka hai
Batao 3no Kitne kitne Saal k Hain?
Reply if u r Genius
Answers
Answer:
Solution−
Consider,
\begin{gathered}\sf \: \dfrac{1+cos \theta + sin \theta}{1+ cos \theta - sin \theta} \\ \\ \end{gathered}
1+cosθ−sinθ
1+cosθ+sinθ
Divide numerator and denominator by cos\thetaθ , we get
\begin{gathered}\sf \: = \: \dfrac{ \dfrac{1+cos \theta + sin \theta}{cos\theta }}{ \dfrac{1+ cos \theta - sin \theta}{cos\theta }} \\ \\ \end{gathered}
=
cosθ
1+cosθ−sinθ
cosθ
1+cosθ+sinθ
\begin{gathered}\sf \: = \: \dfrac{\dfrac{1}{cos\theta } + \dfrac{cos\theta }{cos\theta } + \dfrac{sin\theta }{cos\theta } }{\dfrac{1}{cos\theta } + \dfrac{cos\theta }{cos\theta } - \dfrac{sin\theta }{cos\theta }} \\ \\ \end{gathered}
=
cosθ
1
+
cosθ
cosθ
−
cosθ
sinθ
cosθ
1
+
cosθ
cosθ
+
cosθ
sinθ
\begin{gathered}\sf \: = \: \dfrac{sec\theta + 1 + tan\theta }{sec\theta + 1 - tan\theta } \\ \\ \end{gathered}
=
secθ+1−tanθ
secθ+1+tanθ
\begin{gathered}\boxed{ \sf{ \: \because \: \frac{1}{cosx} = secx \: \: and \: \: \frac{sinx}{cosx} = tanx \: }} \\ \\ \end{gathered}
∵
cosx
1
=secxand
cosx
sinx
=tanx
\begin{gathered}\sf \: = \: \dfrac{(sec\theta + tan\theta) + 1 }{sec\theta + 1 - tan\theta } \\ \\ \end{gathered}
=
secθ+1−tanθ
(secθ+tanθ)+1
\begin{gathered}\sf \: = \: \dfrac{(sec\theta + tan\theta) + {sec}^{2}\theta - {tan}^{2} \theta }{sec\theta + 1 - tan\theta } \\ \\ \end{gathered}
=
secθ+1−tanθ
(secθ+tanθ)+sec
2
θ−tan
2
θ
\begin{gathered}\boxed{ \sf{ \: \because \: {sec}^{2}x - {tan}^{2}x = 1 \: }} \\ \\ \end{gathered}
∵sec
2
x−tan
2
x=1
\begin{gathered}\sf \: = \: \dfrac{(sec\theta + tan\theta) + (sec\theta + tan\theta )(sec\theta - tan\theta )}{sec\theta + 1 - tan\theta } \\ \\ \end{gathered}
=
secθ+1−tanθ
(secθ+tanθ)+(secθ+tanθ)(secθ−tanθ)
\begin{gathered}\boxed{ \sf{ \: \because \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: }} \\ \\ \end{gathered}
∵x
2
−y
2
=(x+y)(x−y)
\begin{gathered}\sf \: = \: \dfrac{(sec\theta + tan\theta)[1 + sec\theta - tan\theta ]}{sec\theta + 1 - tan\theta } \\ \\ \end{gathered}
=
secθ+1−tanθ
(secθ+tanθ)[1+secθ−tanθ]
\begin{gathered}\sf \: = \: sec\theta + tan\theta \\ \\ \end{gathered}
=secθ+tanθ
\begin{gathered}\sf \: = \: \dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \\ \end{gathered}
=
cosθ
1
+
cosθ
sinθ
\begin{gathered}\boxed{ \sf{ \: \because \: \frac{1}{cosx} = secx \: \: and \: \: \frac{sinx}{cosx} = tanx \: }} \\ \\ \end{gathered}
∵
cosx
1
=secxand
cosx
sinx
=tanx
\begin{gathered}\sf \: = \: \dfrac{1 + sin\theta }{cos\theta } \\ \\ \end{gathered}
=
cosθ
1+sinθ
Hence,
\begin{gathered}\bf\implies \:\dfrac{1}{cos\theta } + \dfrac{cos\theta }{cos\theta } + \dfrac{sin\theta }{cos\theta } = \: \dfrac{1 + sin\theta }{cos\theta } \\ \\ \\ \end{gathered}
⟹
cosθ
1
+
cosθ
cosθ
+
cosθ
sinθ
=
cosθ
1+sinθ