Dimensional Analysis Questions Class 11
Q.31 to 35
Attachments:
Answers
Answered by
5
Hey there !!!!
_________________________________________________________
Gas bubble oscillates such that T is proportional to PᵃρᵇEˣ.
⇒⇒⇒⇒ T=[PᵃρᵇEˣ]
M⁰L⁰T¹=(ML⁻¹T⁻²)ᵃ(ML⁻³)ᵇ(ML²T⁻²)ˣ
M⁰L⁰T¹=MᵃL⁻ᵃT⁻²ᵃMᵇL⁻³ᵇMˣL²ˣT⁻²ˣ
M⁰L⁰T¹=Mᵃ⁺ᵇ⁺ˣ L⁻ᵃ⁻³ᵇ⁺²ˣ T⁻²ᵃ⁻²ˣ
M,L,T bases are equal ,So, equating the powers
0=a+b+x ----Equation 1
0=-a-3b+2x----Equation 2
1=-2a-2x--------Equation 3
From equation 3 a+x=-1/2 substituting in equation 1
0=a+b+x
0=-1/2+b
b=1/2
From equation 2 0=-a-3b+2x
0=2x-a-3/2
3/2 =2x-a------- equation 4
from equation 3 -2a-2x=-1
Solving equation 3&4 we get a=-5/6 x=1/3 .
So, a=-5/6 b=1/2 x=1/3
____________________________________________________
32) Dimensions of Force= MLT⁻²
Dimensions of velocity=LT⁻¹
Dimensions of area=L²
Dimensions of density=ML⁻³.
Let us consider area,density,velocity are proportional to force.
F∞vᵃAᵇρˣ------Equation 1
MLT⁻²=(LT⁻¹)ᵃ(L²)ᵇ(ML⁻³)ˣ
MLT⁻²=LᵃT⁻ᵃL²ᵇMˣL⁻³ˣ
MLT⁻²=Mˣ Lᵃ⁺²ᵇ⁻³ˣ T⁻ᵃ
Comparing powers of M,L,T
1=x----Equation 2
1=a+2b-3x----Equation 3
-2=-a-----Equation 4
From equations 2&4 we get x=1 and a=2
Substituting x=1 and a=2 in equation 3
a+2b-3x=1
2+2b-3=1
2b=2
b=1 a=2 x=1
F∞vᵃAᵇρˣ
F∞vA²ρ
removing ∞ by introducing proportionality const "k"
F=kvA²ρ.
_______________________________________________________
33)
Dimensions of "d"=L
Dimensions of Elasticity(E)=ML⁻¹T⁻²
Dimensions of Energy(K)=ML²T⁻²
Let us consider "d" is proportional to E & K
d∞EᵃKᵇ
M⁰L¹T⁰=(ML⁻¹T⁻²)ᵃ(ML²T⁻²)ᵇ
M⁰L¹T⁰=MᵃL⁻ᵃT⁻²ᵃMᵇL⁻²ᵇT⁻²ᵇ
M⁰L¹T⁰=Mᵃ⁺ᵇL⁻ᵃ⁺²ᵇT⁻²ᵃ⁻²ᵇ
Comparing powers of M,L,T
0=a+b----Equation 1
1=2b-a-----Equation 2
0=-2a-2b----Equation 3
From equation 1 and 3 we get a+b=0⇒⇒⇒ a=-b
Substituting a=-b in equation 2
1=2b-a
1=2b-(-b)
1=3b
b=1/3 and a = -1/3
d∞EᵃKᵇ
d∞E⁻¹/³K¹/³
⇒⇒⇒⇒ d∞(K/E)¹/³
______________________________________________________
34) Let us consider Surface tension (S) is proportional to
S=k*Mass*Pressure*radius
S=k(mᵃPᵇrˣ)
Dimensions of Surface tension=ML⁰T⁻²
Dimensions of Pressure=ML⁻¹T⁻²
Dimensions of mass=M
Dimensions of radius=L
and k=1/2
S=k(mᵃPᵇrˣ)
ML⁰T⁻²=(Mᵃ(ML⁻¹T⁻²)ᵇ(L)ˣ)/2
ML⁰T⁻²=Mᵃ⁺ᵇL⁻ᵇ⁺ˣT⁻²ᵇ/2
Comparing powers of M,L,T
1=a+b----Equation 1
0=x-b------Equation 2
-2=-2b----Equation 3
From equation 3 b=1 substituting b=1 in equations 1&2
we get a=0 and x=1
Now a=0 b=1 x=1 k=1/2
S=k(mᵃPᵇrˣ)
S=Pr/2
____________________________________________________
35) Let us consider Time period "T" is proportional to
T=radius*density*gravitational constant
Dimensions of time period =T
Dimensions of radius=L
Dimensions of density=ML⁻³
Dimensions of gravitational constant(G) = M⁻¹L³T⁻².
T∞rᵃρᵇGˣ
T=Lᵃ(ML⁻³)ᵇ(M⁻¹L³T⁻²)ˣ
M⁰L⁰T¹=Mᵇ⁻ˣLᵃ⁻³ᵇ⁻³ˣT⁻²ˣ
Comparing powers of M,L,T
b-x=0 ----Equation 1
a-3b-3x=0 -----Equation 2
1=-2x----Equation 3
From equation 3 x=-1/2 and from equation 1 x=b
a-3b-3x=0
But b=x
a-3b-3b=0
a=0
So, a=0 b=-1/2 x=-1/2
T∞rᵃρᵇGˣ
T=k*r⁰ρ⁻¹/²G⁻¹/²
T=k/√ρG.
___________________________________________________
Hope this helped you.....................
_________________________________________________________
Gas bubble oscillates such that T is proportional to PᵃρᵇEˣ.
⇒⇒⇒⇒ T=[PᵃρᵇEˣ]
M⁰L⁰T¹=(ML⁻¹T⁻²)ᵃ(ML⁻³)ᵇ(ML²T⁻²)ˣ
M⁰L⁰T¹=MᵃL⁻ᵃT⁻²ᵃMᵇL⁻³ᵇMˣL²ˣT⁻²ˣ
M⁰L⁰T¹=Mᵃ⁺ᵇ⁺ˣ L⁻ᵃ⁻³ᵇ⁺²ˣ T⁻²ᵃ⁻²ˣ
M,L,T bases are equal ,So, equating the powers
0=a+b+x ----Equation 1
0=-a-3b+2x----Equation 2
1=-2a-2x--------Equation 3
From equation 3 a+x=-1/2 substituting in equation 1
0=a+b+x
0=-1/2+b
b=1/2
From equation 2 0=-a-3b+2x
0=2x-a-3/2
3/2 =2x-a------- equation 4
from equation 3 -2a-2x=-1
Solving equation 3&4 we get a=-5/6 x=1/3 .
So, a=-5/6 b=1/2 x=1/3
____________________________________________________
32) Dimensions of Force= MLT⁻²
Dimensions of velocity=LT⁻¹
Dimensions of area=L²
Dimensions of density=ML⁻³.
Let us consider area,density,velocity are proportional to force.
F∞vᵃAᵇρˣ------Equation 1
MLT⁻²=(LT⁻¹)ᵃ(L²)ᵇ(ML⁻³)ˣ
MLT⁻²=LᵃT⁻ᵃL²ᵇMˣL⁻³ˣ
MLT⁻²=Mˣ Lᵃ⁺²ᵇ⁻³ˣ T⁻ᵃ
Comparing powers of M,L,T
1=x----Equation 2
1=a+2b-3x----Equation 3
-2=-a-----Equation 4
From equations 2&4 we get x=1 and a=2
Substituting x=1 and a=2 in equation 3
a+2b-3x=1
2+2b-3=1
2b=2
b=1 a=2 x=1
F∞vᵃAᵇρˣ
F∞vA²ρ
removing ∞ by introducing proportionality const "k"
F=kvA²ρ.
_______________________________________________________
33)
Dimensions of "d"=L
Dimensions of Elasticity(E)=ML⁻¹T⁻²
Dimensions of Energy(K)=ML²T⁻²
Let us consider "d" is proportional to E & K
d∞EᵃKᵇ
M⁰L¹T⁰=(ML⁻¹T⁻²)ᵃ(ML²T⁻²)ᵇ
M⁰L¹T⁰=MᵃL⁻ᵃT⁻²ᵃMᵇL⁻²ᵇT⁻²ᵇ
M⁰L¹T⁰=Mᵃ⁺ᵇL⁻ᵃ⁺²ᵇT⁻²ᵃ⁻²ᵇ
Comparing powers of M,L,T
0=a+b----Equation 1
1=2b-a-----Equation 2
0=-2a-2b----Equation 3
From equation 1 and 3 we get a+b=0⇒⇒⇒ a=-b
Substituting a=-b in equation 2
1=2b-a
1=2b-(-b)
1=3b
b=1/3 and a = -1/3
d∞EᵃKᵇ
d∞E⁻¹/³K¹/³
⇒⇒⇒⇒ d∞(K/E)¹/³
______________________________________________________
34) Let us consider Surface tension (S) is proportional to
S=k*Mass*Pressure*radius
S=k(mᵃPᵇrˣ)
Dimensions of Surface tension=ML⁰T⁻²
Dimensions of Pressure=ML⁻¹T⁻²
Dimensions of mass=M
Dimensions of radius=L
and k=1/2
S=k(mᵃPᵇrˣ)
ML⁰T⁻²=(Mᵃ(ML⁻¹T⁻²)ᵇ(L)ˣ)/2
ML⁰T⁻²=Mᵃ⁺ᵇL⁻ᵇ⁺ˣT⁻²ᵇ/2
Comparing powers of M,L,T
1=a+b----Equation 1
0=x-b------Equation 2
-2=-2b----Equation 3
From equation 3 b=1 substituting b=1 in equations 1&2
we get a=0 and x=1
Now a=0 b=1 x=1 k=1/2
S=k(mᵃPᵇrˣ)
S=Pr/2
____________________________________________________
35) Let us consider Time period "T" is proportional to
T=radius*density*gravitational constant
Dimensions of time period =T
Dimensions of radius=L
Dimensions of density=ML⁻³
Dimensions of gravitational constant(G) = M⁻¹L³T⁻².
T∞rᵃρᵇGˣ
T=Lᵃ(ML⁻³)ᵇ(M⁻¹L³T⁻²)ˣ
M⁰L⁰T¹=Mᵇ⁻ˣLᵃ⁻³ᵇ⁻³ˣT⁻²ˣ
Comparing powers of M,L,T
b-x=0 ----Equation 1
a-3b-3x=0 -----Equation 2
1=-2x----Equation 3
From equation 3 x=-1/2 and from equation 1 x=b
a-3b-3x=0
But b=x
a-3b-3b=0
a=0
So, a=0 b=-1/2 x=-1/2
T∞rᵃρᵇGˣ
T=k*r⁰ρ⁻¹/²G⁻¹/²
T=k/√ρG.
___________________________________________________
Hope this helped you.....................
DiyanaN:
omg! awzm job
Similar questions