Physics, asked by meenugireesh2020, 7 months ago

dimentionally check

k. E = m^2 v^3

Answers

Answered by VedankMishra
0

Answer:

< !DOCTYPE html > < html lang="en" > < head > < title > Shinchan < /title > < /head > < body > < div class="face" > < div class="forhead" > < /div > < div class="cheeks" > < /div > < div class="ear" > < /div > < div class="eyebrow left" > < /div > < div class="eyebrow right" > < /div > < div class="eye left" > < /div > < div class="eye right" > < /div > < div class="mouth" > < /div > < div class="shy" > < /div > < div class="shy right" > < /div > < /div > < style > body { background:#FF0000 } .face { height: 600px; width: 350px; position: relative; margin: auto; } .face:before { content:''; background:black; height:122px; width:95px; position:absolute; z-index:6; left:210px; top:29px; border-radius:100% 190% 100% 0%; transform: rotate(-20deg); } .face:after { content:''; width:230px; height:180px; background:black; content:''; transform: rotate(-8deg); position:absolute; border-radius:100% 160% 100% 0%; left:70px; bottom:-14px; top:10px; z-index:5; } .forhead, .forhead:after { content: ''; width: 220px; height: 181px; background: #fbc6a3; content: ''; transform: rotate(-3deg); position: absolute; border-radius: 60% 120% 50% 0%; left: 67px; bottom: -14px; top: 21px; z-index: 6; } .forhead:after { width: 160px; height: 150px; border-radius: 150% 174% 159% 100%; transform: rotate(-20deg); top: 13px; left: 59px; border-top: 15px solid #fbc6a3; } .forhead:before{ background:#fbc6a3; width:60px; height:10px; content:''; position:absolute; z-index:7; left:105px; top:9px; transform: rotate(13deg); border-radius:100% } .ear { width:60px; height:50px; background:#fbc6a3; z-index:7; position:absolute; border-radius:300% 190% 200% 100%; transform: rotate(-20deg); top:110px; left:285px } .cheeks { background: #fbc6a3; width: 280px; height: 100px; border-radius: 50px 0px 50px 40px; transform: rotate(-3deg); position: relative; content: 'a'; top: 108px; left:10px } .cheeks:after { width: 297px; height: 100px; background: #fbc6a3; content: ''; transform: rotate(-3deg); position: absolute; border-radius: 100% 100% 100% 100%; left: 1px; bottom: -14px; } .eye { width:40px; height:40px; position:relative; background:black; border-radius:100%; animation: close-eye 4s none .2s infinite; } .eye:after { content:''; position:absolute; background:white; width:15px; height:15px; border-radius:100%; left:17px; top:12px; } .eye:before { content:''; position:absolute; width:70px; height:60px; border-radius:100%; border-top:2px solid black; left:-20px; margin-top:-20px; } .eye.left,.eye.right { position:absolute; top:80px; left:100px; z-index:10; } .eye.right { left:190px; top:90px; } .eyebrow { animation: eyebroani 2s linear .2s infinite; } .eyebrow,.eyebrow:after { position:absolute; width:20px; height:60px; background:black; z-index:8; border-radius:15px; transform: rotate(40deg); top:10px; left:90px; } .eyebrow:after { content:''; transform: rotate(-100deg); left:19px; margin-top:-23px; top:auto; } .eyebrow.right { left:180px; top:8px; transform: rotate(50deg); } .mouth { position:absolute; width:40px; height:40px; background:#76322f; border-radius:100%; top:180px; left:50px; z-index:8; } .shy { position:absolute; width:0px; height:0px; border-radius:100%; opacity:0; box-shadow: 0px 0px 40px 20px red; z-index:8; left:35px; top:160px; animation: shy 10s linear .2s infinite; } .shy.right { left:170px; top:180px; } @keyframes eyebroani { 0% {margin-top:auto} 10% {margin-top:-10px} 20% {margin-top:auto} 30% {margin-top:-10px} 40% {margin-top:auto} 100% {margin-top:auto} } @keyframes shy { 0% {opacity:0} 10% {opacity:0.2} 90% {opacity:0.2} 100% {opacity:0} } @keyframes close-eye { 0% { height: 40px; margin-top: auto; overflow: auto; } 5% { height: 2px; margin-top: 20px; overflow: hidden; } 5.1% { height: 40px; margin-top:0; overflow:visible; } } < /style > < /body > < /html >

Answered by kumarranjanratnesh
0

Answer:

The dimensional formula for K.E

is [M 1L 2T −2 ]

According to the principle of homogeneity of dimensional analysis, the dimensions of each term on both the sides of correct formula or equation will be the same.

The dimensions of quantity on R.H.S of different quantities are

(a)[M2L3T −3]

(b)[M 1L 2T −2]

(c)[M 1L1T−2]

(d)[M1L2T −2]

(e)[M1L2T−2]+[M1L1T−2]

Similar questions