Physics, asked by Reman4471, 8 months ago

Direve equation v2-u2=2as by graphical method

Answers

Answered by Anonymous
11

\overbrace{\underbrace{\sf{★Answer★}}}

As per the lows of motion we know that,

  • S = ut + 1/2 at²
  • v = u + at

Now, we rearrange the first equation to get

t=\frac{v–u}{t}

We can use this to replace t wherever it appears in the second equation. So

s =  ut + \frac{1}{2} \: at^{2}  \\  \\ s = u \: ( \frac{v - u}{a} ) +  \frac{1}{2} \: a \: ( \frac{v - u}{a} ) ^{2}  \\  \\ 2as \:  = 2u \: (v - u)  + (v - u)^{2}  \\  \\ 2as \:  = 2uv - 2u ^{2}   + v ^{2}  - 2uv + u ^{2}  \\  \\ 2as \:  = \: v^{2}  -  \: u^{2}  \\  \\ v  ^{2}  = u^{2}   +   \: 2as

Hence proved........

Attachments:
Answered by itzAwesomeSoul10
0

Answer:

As  \:  \: per  \:  \: the \:  lows \:  \:  of  \:  \: motion  \:  \: we  \:  \: know  \: that,</p><p></p><p>S = ut + 1/2 at²As per the lows of motion we know that,</p><p></p><p>S = ut + 1/2 at²</p><p></p><p>v = u + at</p><p></p><p>Now, we rearrange the first equation to get</p><p></p><p>t=\frac{v–u}{t}t=tv–u</p><p></p><p>We can use this to replace t wherever it appears in the second equation. So</p><p></p><p>\begin{gathered}s = ut + \frac{1}{2} \: at^{2} \\ \\ s = u \: ( \frac{v - u}{a} ) + \frac{1}{2} \: a \: ( \frac{v - u}{a} ) ^{2} \\ \\ 2as \: = 2u \: (v - u) + (v - u)^{2} \\ \\ 2as \: = 2uv - 2u ^{2} + v ^{2} - 2uv + u ^{2} \\ \\ 2as \: = \: v^{2} - \: u^{2} \\ \\ v ^{2} = u^{2} + \: 2as\end{gathered}s=ut+21at2s=u(av−u)+21a(av−u)22as=2u(v−u)+(v−u)22as=2uv−2u2+v2−2uv+u22as=v2−u2v2=u2+2as</p><p></p><p></p><p></p><p></p><p>v = u + at</p><p></p><p>Now, we rearrange the first equation to get</p><p></p><p>t=\frac{v–u}{t}t=tv–u</p><p></p><p>We  \: can  \: use  \: this to replace t wherever it appears in the second equation. So</p><p></p><p>\begin{gathered}s = ut + \frac{1}{2} \: at^{2} \\ \\ s = u \: ( \frac{v - u}{a} ) + \frac{1}{2} \: a \: ( \frac{v - u}{a} ) ^{2} \\ \\ 2as \: = 2u \: (v - u) + (v - u)^{2} \\ \\ 2as \: = 2uv - 2u ^{2} + v ^{2} - 2uv + u ^{2} \\ \\ 2as \: = \: v^{2} - \: u^{2} \\ \\ v ^{2} = u^{2} + \: 2as\end{gathered}s=ut+21at2s=u(av−u)+21a(av−u)22as=2u(v−u)+(v−u)22as=2uv−2u2+v2−2uv+u22as=v2−u2v2=u2+2as</p><p></p><p></p><p>

Similar questions