Math, asked by chandansharma456, 6 months ago

dis
10. Find a relation between x and y such that the point (x, y) is equidistant from the sia
(3,6) and (-3,4).​

Answers

Answered by abhi569
20

Answer:

3x + y = 5

Step-by-step explanation:

Using distance formula, which says if there are two points (x₁, y₁) and (x₂, y₂) then the distance between them is √(x₁ - x₂) + (y₁ - y₂).

 Here,

⇒ distance b/w (x,y) and (3.6) is equal to the distance b/w (x, y) and (-3,4).

⇒ √(3 - x)² + (6 - y)² = √(-3 - x)² + (4 - y)²

⇒ (3 - x)² + (6 - y)² = (-3-x)² + (4 - y)²

⇒ (3 - x)² - (- 3- x)² = (4 - y)² - (6 - y)²

⇒ (3 - x)² - (3 + x)² = (4 - y)² - (6 - y)²

⇒ (3 - x + 3 + x)(3 - x - 3 - x) = (4 - y + 6 - y)(4 - y - 6 + y)

⇒ 6(- 2x) = (10 - 2y)(- 2)

⇒ - 12x = - 20 + 4y

⇒ - 3x = - 5 + y

⇒ 3x + y = 5

Answered by DARLO20
64

\bf{\blue{\underline{\underline{\pink{GIVEN:-}}}}}

  • The point (x , y) is equidistant from the points (3 , 6) and (-3 , 4) .

\bf{\blue{\underline{\underline{\pink{TO\: FIND:-}}}}}

  • The relation between x and y .

\bf{\blue{\underline{\underline{\pink{SOLUTION:-}}}}}

Let,

  • A be the point whose coordinates are (x , y) .

  • B be the point whose coordinates are (3 , 6) .

  • C be the point whose coordinates are (-3 , 4) .

☃️ According to the question, A is equidistant from B and C .

  • => AB = AC ------(1)

\orange\star\:\bf{\gray{\underline{\pink{\boxed{\purple{AB\:=\:\sqrt{(x_2\:-\:x_1)^2\:+\:(y_2\:-\:y_1)^2}\:}}}}}}

Where,

  • \bf\red{x_1} = x

  • \bf\red{x_2} = 3

  • \bf\red{y_1} = y

  • \bf\red{y_2} = 6

\bf\green{\implies\:AB\:=\:\sqrt{(3\:-\:x)^2\:+\:(6\:-\:y)^2}\:}

Similarly,

\green\star\:\bf{\gray{\underline{\pink{\boxed{\purple{AC\:=\:\sqrt{(x_2\:-\:x_1)^2\:+\:(y_2\:-\:y_1)^2}\:}}}}}}

Where,

  • \bf\red{x_1} = x

  • \bf\red{x_2} = -3

  • \bf\red{y_1} = y

  • \bf\red{y_2} = 4

\bf\green{\implies\:AC\:=\:\sqrt{(-3\:-\:x)^2\:+\:(4\:-\:y)^2}\:}

⚡ From Equation 1 :-

\rm{\implies\:\sqrt{(3\:-\:x)^2\:+\:(6\:-\:y)^2}\:=\:\sqrt{(-3\:-\:x)^2\:+\:(4\:-\:y)^2}\:}

\rm{\implies\:(9\:+\:x^2\:-\:6x)\:+\:(36\:+\:y^2\:-\:12y)\:=\:(9\:+\:x^2\:+\:6x)\:+\:(16\:+\:y^2\:-\:8y)\:}

\rm{\implies\:x^2\:+\:y^2\:-\:6x\:-\:12y\:+\:45\:=\:x^2\:+\:y^2\:+\:6x\:-\:8y\:+\:25\:}

\rm{\implies\:-12x\:-\:4y\:+\:20\:=\:0\:}

\rm{\implies\:3x\:+\:y\:=\:5\:}

\rm{\implies\:3x\:=\:5\:-\:y\:}

\bf\pink{\implies\:x\:=\:\dfrac{5\:-\:y}{3}\:}

Similar questions